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L’uomo

Le attività umane 
sono cruciali nel 
determinare la 
biodiversità delle 
isole, come ha 
mostrato uno 
studio sui rettili 
del Mediterraneo

di Emilio Padoa-Schioppa e Francesco Ficetola

V iviamo in un periodo in cui l’umani­
tà è in grado di modificare gli equilibri 
complessivi della biosfera, un’epoca indi­

cata anche con il termine Antropocene (si veda il 
box a p. 99). La pressione antropica sta causando, 
tra le altre cose, l’estinzione precoce di molte for­
me di vita. La perdita di biodiversità ha raggiunto 
livelli tanto allarmanti che i biologi della conser­
vazione parlano di sesta estinzione di massa, para­
gonando la situazione attuale ad altri momenti del 

passato in cui vi furono estinzioni rapide, estese e 
che sconvolsero gli equilibri della Terra (per esem­
pio la scomparsa dei dinosauri). La distruzione e la 
trasformazione di habitat e paesaggi naturali e la 
diffusione delle specie invasive sono tra le princi­
pali cause di questa estinzione di massa.

Non è però semplice documentare direttamen­
te un’estinzione. Non sempre durante sopralluoghi 
e spedizioni si riesce a individuare una specie rile­
vata in passato, ma ciò non significa che la specie 
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L’uomo
in sintesi

■ � Fino a poco tempo fa si 
ipotizzava che il numero di 
specie insulari dipendesse 
soprattutto dalle dimensioni 
dell’isola e dalla sua 
distanza dalla terraferma. 

■ � Ora uno studio sulla 
distribuzione dei rettili delle 
isole mediterranee ha 
dimostrato che 
l’antropizzazione del 
territorio influenza in modo 
fondamentale la biodiversità. 

■ � �Questo risultato mostra 
ancora una volta che la 
nostra epoca è 
caratterizzata dalla capacità 
dell’uomo di stravolgere 
gli equilibri della biosfera.

in questione sia veramente estinta: è capitato che 
qualche specie sia stata poi riscoperta. Tra l’altro 
ci sono estinzioni continue non rilevate, visto che 
numerose specie non sono state ancora descritte. 
Per queste ragioni, la reale portata dell’azione an­
tropica viene stimata sulla base dei dati empirici 
disponibili. Le isole, con la loro estensione limitata 
e le specie uniche che le abitano, sono meravigliosi 
laboratori naturali per costruire ipotesi sui fatto­
ri che determinano la diffusione degli organismi, 
in ambienti in cui il numero di variabili può essere 
tenuto maggiormente sotto controllo.

All’interno dell’ecologia si è sviluppata una di­

sciplina, la biogeografia insulare, che studia la di­
stribuzione di piante e animali sulle isole. Negli 
anni sessanta gli ecologi statunitensi Robert Mac­
Arthur ed Edward O. Wilson avevano proposto un 
modello per cui il numero di specie in un’isola di­
pende da due fattori: le dimensioni dell’isola e la 
distanza dalla terraferma. Quando una specie colo­
nizza un’isola, le dimensioni determinano la proba­
bilità di stabilirvisi con successo oppure estinguer­
si: in isole di dimensioni maggiori, gli organismi 
possono stabilire popolazioni più numerose e tro­
vare una maggiore varietà di microhabitat.

Quindi isole più grandi ospitano un nume­

amante delle isole.  

Un esemplare di lucertola campestre 

(Podarcis sicula), una delle specie di 

lucertola più diffuse sulle isole italiane. 

L’uomo
	 e la geografia	 della vita
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ro maggiore di specie e comunità più complesse e 
articolate. Inoltre, più un’isola è vicina alla terra­
ferma maggiore è la probabilità che alcuni orga­
nismi attraversino il tratto di mare, aumentando il 
numero di specie presenti. Nel complesso, comun­
que, le dimensioni dell’isola sono considerate il fat­
tore che determina maggiormente il numero di spe­
cie presenti. Dopo la pubblicazione della teoria di 
MacArthur e Wilson, i loro allievi hanno comin­
ciato a studiare e sperimentare la validità dell’ipo­
tesi. In particolare Daniel Simberloff ha fatto un 
esperimento complesso su alcuni isolotti al largo 
della Florida, osservando il numero di specie ani­
mali e vegetali e provvedendo poi a rimuovere tut­
te le specie animali per controllare le dinamiche di 
ricolonizzazione: i risultati dell’ esperimento hanno 
confermato il modello di MacArthur e Wilson.

Numerosi altri studi su diversi gruppi tassono­
mici (uccelli, mammiferi, rettili, anfibi, piante e in­
vertebrati) hanno prodotto risultati simili, portan­
do alla formulazione del principio secondo cui in 
un’isola il numero di specie è direttamente propor­
zionale alla sua area e inversamente proporziona­
le alla distanza dal continente (si veda lo schema in 
alto in questa pagina), un modello che si è imposto 
come una delle principali basi teoriche in ecologia.

A questo semplice schema si è poi aggiunto che 
occorre considerare anche la varietà di ambienti in 
un’isola, visto che, a parità di superficie, un’isola 
con più ambienti (per esempio con un’ampia va­
riazione altitudinale) dovrebbe ospitare un numero 
più elevato di specie.

L’azione dell’uomo può influenzare fortemente 
gli ecosistemi insulari: a causa delle loro piccole di­
mensioni, questi ambienti sono molto fragili, e l’uo­
mo può determinare rapidamente l’estinzione del­
le specie che le abitano. Alcune delle estinzioni più 
note sono avvenute proprio su isole, come la scom­
parsa del dodo a Mauritius. Ma la presenza umana 
è stata raramente inserita nei modelli predittivi del­
la biogeografia insulare. Qual è l’effetto dell’azione 
antropica sul numero di specie in un’isola? Il nostro 
studio sugli arcipelaghi del Mediterraneo ha cerca­
to di analizzare se le attività umane possano modi­
ficare le relazioni biogeografiche classiche, come il 
rapporto tra area e numero di specie.

Rettili e isole nel Mediterraneo
Nel bacino del Mediterraneo vi sono numerose 

isole, alcune delle quali molte ben studiate dal pun­
to di vista biologico: è quindi una regione ideale 
per analisi biogeografiche. Quest’area ha però ospi­
tato più di 3000 anni di storia umana, e le sue isole 
ne sono state protagoniste. Abbiamo visto il Medi­
terraneo come un laboratorio unico per capire co­

me le attività umane interferiscano con i processi 
naturali che determinano la distribuzione delle spe­
cie. Il Mediterraneo è inoltre uno dei centri di biodi­
versità dei rettili: l’Unione internazionale di conser­
vazione della natura mostra che i paesi del bacino 
ospitano la maggior ricchezza di rettili in Europa.

Numerose di queste specie sono minaccia­
te di estinzione, anche perché molte sono ende­
mismi insulari, cioè sono presenti solo su alcune 
isole e assenti dalla terraferma. La lucertola mal­
tese (Podarcis filfolensis), per esempio, vive solo 
nell’arcipelago maltese e in due delle isole Pelagie, 
Lampione e Linosa; e la lucertola di Bedriaga (Ar-
cheolacerta bedriagae) vive solo in Sardegna, Cor­
sica e in alcune isole satellite. Ma le specie endemi­

modello e realtà. In alto il modello 

dell’equilibrio insulare proposto da 

MacArthur e Wilson, secondo cui 

un’isola grande o vicina al continente 

ospita più specie rispetto a una 

piccola o distante. Qui sopra una 

lucertola maltese, endemica delle 

isole maltesi e di due isole Pelagie.



www.lescienze.it� LE SCIENZE  99

M
at

te
o 

Ca
ra

ss
al

e/
SI

M
E

che non sono limitate alle lucertole. In Sicilia vive 
una specie di testuggine palustre (Emys trinacris) 
distinta da quelle presenti nel resto d’Europa.

Il tasso di endemismo è elevato in Macaronesia 
(cioè le isole Canarie, Azzorre e Madeira, che pur 
trovandosi nell’Oceano Atlantico vengono spesso 
associate alla regione mediterranea), in cui è ad­
dirittura presente un genere di lucertole endemico 
(Gallotia) che comprende sette specie ed è un in­
teressante esempio di radiazione adattativa. D’al­
tra parte, millenni di storia umana hanno agito in 
maniera diversa sulle isole: alcune sono molto an­
tropizzate e urbanizzate, alcune ospitano insedia­
menti antropici minimi e altre sono disabitate, ren­
dendole perfette per i nostri obiettivi.

Sfruttando la letteratura scientifica disponibile, 
quali gli atlanti di distribuzione della fauna, ab­
biamo costruito una banca dati che racchiude in­
formazioni sui rettili che vivono in 212 isole del 
Mediterraneo occidentale e della Macaronesia. Per 
ciascuna isola abbiamo elencato le specie di retti­
li terrestri, valutando se fossero autoctone o intro­
dotte. Abbiamo poi misurato alcune caratteristiche 
geografiche (area, distanza dalla terraferma e alti­
tudine massima) e alcune misure di pressione an­
tropica (numero di abitanti e presenza di aeropor­
ti). La presenza di aeroporti ci è sembrata un buon 
indicatore, facile da misurare e omogeneo in tut­
ta l’area, dell’intensità dei flussi turistici ed econo­
mici delle isole.

Il termine Antropocene è stato coniato e diffuso da Paul Crutzen, premio Nobel per la chimica nel 1995 
grazie ai suoi studi sull’ozono stratosferico. Con questo termine Crutzen indica che a partire dalla 

Rivoluzione industriale la Terra è entrata in una nuova fase geologica, dominata dall’uomo. Le azioni 
antropiche, in effetti, sono in grado di modificare gli equilibri del pianeta. L’evento più evidente è l’alterazione 
della composizione dell’atmosfera, dovuta alle emissioni di gas serra che determinano i cambiamenti 
climatici, riscaldamento globale in testa. Insieme al riscaldamento globale si osservano alterazioni nei cicli 
biogeochimici (come quello dell’azoto e quello del fosforo), nella chimica dell’atmosfera (come il buco nello 
strato di ozono), nella chimica delle acque e dei suoli. L’uomo agisce anche come forza geomorfologica, in 
grado di smuovere più terra di quanto facciano i fiumi con la loro attività di erosione. Inoltre altera 
radicalmente la superficie terrestre, distruggendo e cambiando habitat, ecosistemi e paesaggi a ritmi sempre 
più elevati e in modo diffuso in quasi tutta la biosfera.
A livello di biodiversità, infine, sono sempre più frequenti le estinzioni locali o globali collegabili alle attività 
antropiche. Le principali cause di scomparsa della biodiversità sono distruzione degli habitat, diffusione di 
specie alloctone invasive, inquinamento, crescita della popolazione umana ed eccesso di caccia e raccolta. E 
ovviamente tutti questi fattori possono agire in maniera sinergica: per esempio i cambiamenti climatici 
accelerano il declino di alcune specie già minacciate dalle attività umane.

La Terra ai tempi dell’Antropocene

POCO ANTROPIZZATA. L’isola di 

Linosa, nel canale di Sicilia, è poco 

antropizzata ed è stata studiata dagli 

autori per essere confrontata con altre 

isole mediterranee a elevato tasso  

di antropizzazione e urbanizzazione.
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Sfruttando la teoria dell’informazione (si veda il 
box qui a fianco) abbiamo confrontato tra loro tre 
possibili modelli: il modello geografico, secondo 
cui le caratteristiche geografiche naturali determi­
nano il numero di specie presenti sulle isole; il mo­
dello antropico, in cui la pressione umana spiega il 
numero di specie; e un modello congiunto, in cui il 
ruolo chiave è svolto da un effetto combinato del­
le caratteristiche geografiche e antropiche. Queste 
analisi sono state fatte sia per le specie autoctone 
sia per quelle introdotte dall’uomo.

Rettili nativi e rettili alloctoni
Sulle isole considerate abbiamo individuato da 

1 a 15 specie native di rettili. Come previsto, il nu­
mero di specie è maggiore nelle isole di maggior 
superficie (Sicilia, Sardegna e Corsica) e con rilievi, 
e diminuisce nelle isole più distanti dal continente. 
Le caratteristiche geografiche però non sono suffi­
cienti a spiegare la ricchezza in specie. Anche l’an­
tropizzazione è importante: a parità di superficie, 
le isole meno antropizzate hanno più specie. Mal­
ta, per esempio, è relativamente grande (250 chi­
lometri quadrati) ma ha una pressione antropica 
molto elevata, e ospita sei specie autoctone; al lar­
go della Sardegna ci sono diverse isolette (Tavola­
ra, Molara o Asinara) di pochi chilometri quadrati 
ma poco antropizzate: ospitano fino a 9-11 specie 
native. Anche a Maiorca e Minorca vivono meno 

La teoria dell’informazione  
nei modelli ecologici

L’ecologia ha spesso sofferto di un complesso di inferiorità rispetto ad altre discipline 
scientifiche: in fisica, in chimica o anche in alcune aree della biologia è possibile 

fare esperimenti ripetibili per testare le ipotesi scientifiche. Questa procedura è però 
impraticabile sia dal punto di vista logistico sia da quello etico per gli studi di ecologia o 
biogeografia che cercano di capire le cause della distribuzione delle specie: nel nostro 
caso, non avremmo potuto immaginare di creare 200 isole artificiali, introdurvi un certo 
numero di specie e poi l’uomo. Per studi del genere la distribuzione delle specie è 
tradizionalmente analizzata con un processo induttivo (prima si fanno le osservazioni e 
poi si propone un’ipotesi), ma questo procedimento può rendere complessa la 
falsificazione delle ipotesi scientifiche.
Negli ultimi decenni, però, sono stati sviluppati raffinati metodi statistici, basati sulla 
teoria dell’informazione, che permettono di valutare quale ipotesi scientifica sia meglio 
suffragata dai dati disponibili. In pratica si segue un processo ipotetico deduttivo 
(proposta, confronto e falsificazione di ipotesi alternative), che permette di valutare la 
probabilità che una data ipotesi sia vera:
1) �vengono formulate ipotesi a priori sui processi che possono determinare la 

distribuzione delle specie;
2) �vengono costruiti modelli statistici che corrispondono alle diverse ipotesi;
3) �i dati raccolti sono inseriti nei modelli, che sono confrontati sulla base di criteri 

statistici.
A questo punto è possibile stabilire qual è il modello più probabile, sulla base dei dati 
raccolti, e quindi quali processi biologici hanno verosimilmente determinato la 
distribuzione delle specie.

Emilio Padoa-Schioppa e 
Francesco Ficetola lavorano al 
Dipartimento di scienze 
dell’ambiente e del territorio 
dell’Università degli Studi di Milano-
Bicocca, e si occupano di 
conservazione del paesaggio e della 
biodiversità. Padoa-Schioppa è 
ricercatore confermato in ecologia, 
Ficetola è assegnista di ricerca. 

gli autori	
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specie rispetto a quanto ci aspetteremmo dall’ana­
lisi di superficie e distanza dal continente.

Dalle analisi emerge quindi che il rapporto tra 
superficie e numero di specie non è lineare, come 
previsto dalla teoria. I dati sono descritti meglio da 
una linea spezzata: il numero di specie cresce rapi­
damente con l’area nelle isole con superficie fino 
1,5 chilometri quadrati, ma la crescita si appiatti­
sce nelle isole più grandi. La superficie di 1,5 chi­
lometri quadrati è proprio il punto in cui l’impatto 
antropico aumenta improvvisamente, e la maggior 
parte delle isole sopra queste dimensioni è abitata.

Nel complesso, abbiamo costruito un modello 
secondo cui l’azione antropica modifica la relazio­
ne tra superficie e ricchezza in rettili. L’area ha un 
impatto diretto e positivo sul numero di specie: a 
parità di altri fattori, le isole più grandi sono le più 
ricche di specie. Ma l’uomo non si stabilisce a caso 
sulle isole, e l’area ha anche un effetto importan­
te sul grado di antropizzazione: le isole più gran­
di sono anche quelle con più popolazione e scambi 
commerciali. A sua volta, l’antropizzazione influi­
sce negativamente sulla ricchezza di specie. In pra­
tica, le attività umane hanno modificato la relazio­
ne tra superficie e specie presenti.

Sulle isole inoltre abbiamo contato da 0 a 7 spe­
cie alloctone, di cui molte introdotte in tempi sto­
rici anche recenti dai continenti europeo e africano 
o da altre isole del Mediterraneo. Ne sono esem­

pi il camaleonte (Chamaleo chamaleon), introdot­
to a Malta in tempi recenti, e la natrice viperina 
(Natrix maura), un serpente introdotto a Maiorca 
e Minorca in epoca romana. Alcune specie hanno 
causato danni incalcolabili alla biodiversità delle 
isole. Proprio la natrice viperina ha portato il ro­
spo ostetrico di Maiorca (Alytes muletensis) sull’or­
lo dell’estinzione. Le nostre analisi mostrano che i 
fattori antropici sono essenziali per spiegare la di­
stribuzione delle specie alloctone: le isole più po­
polate e con più scambi hanno subito un maggior 
numero di introduzioni, e quindi vi si sono stabilite 
più specie. Ma i soli fattori antropici non bastano 
e occorre considerare anche i fattori geografici. Le 
dimensioni dell’isola sono cruciali per il successo 
dell’insediamento: un’isola grande può offrire un 
maggior numero di nicchie ecologiche dove stabi­
lirsi, e quindi ospitare più specie alloctone.

L’imprescindibile ruolo dell’uomo
I nostri risultati mostrano che l’azione umana ha 

un’enorme influenza sulla distribuzione delle spe­
cie native e invasive. Isole con una grande pressio­
ne antropica ospitano meno specie native di quanto 
ci aspetteremmo considerando solo fattori geogra­
fici; per contro, aumentano le specie invasive.

Questo lavoro propone due spunti di riflessione. 
Da un lato, la distribuzione delle specie mostra che 
è valida la regola del «piccolo è bello»: oggi alcu­
ne piccole isole hanno un valore molto importan­
te per la conservazione della biodiversità, visto che 
su di esse sopravvivono specie estinte sulle isole 
principali a causa dell’antropizzazione. La lucer­
tola delle Eolie (Podarcis raffonei), per esempio, è 
scomparsa in tutte le isole principali e sopravvive 
solo su qualche isolotto o scogli disabitati.

Inoltre ci siamo resi conto che occorre svilup­
pare modelli che considerino l’azione dell’uomo. 
L’ecologia è una scienza relativamente giovane, e 
solo negli ultimi anni sta dibattendo sull’esistenza 
di leggi generali al suo interno. In una recente sin­
tesi, Walter Dodds ne ha individuate diverse, e la 
terza recita: «L’uomo domina su ogni cosa». È il ri­
conoscimento dell’Antropocene, e i nostri risulta­
ti vanno in questa direzione. È il momento di con­
siderare la pressione antropica come un fattore che 
rivaleggia con i processi naturali e geografici nel 
determinare la biodiversità di un territorio.� n
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non solo lucertole. La natrice viperina (in alto) è stata 

introdotta sulle Baleari in epoca romana, dove ha causato 

gravi danni alla biodiversità. Il ramarro (in basso) è un grosso 

sauro che vive in Europa continentale e in alcune isole. A 

fronte, Malta, isola con elevato tasso di antropizzazione, che 

influisce in modo negativo sulla biodiversità.
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ABSTRACT

Aim

 

Understanding the factors determining the transition from introduction of
aliens to the establishment of invasive populations is a critical issue of the study of
biological invasions, and has key implications for management. Differences in
fitness among areas of introduction can define the zones where aliens become
invasive. The American slider turtle 

 

Trachemys scripta

 

 has been introduced world-
wide, and has negative effects on freshwater communities, but only a subset of
introduced populations breed successfully. We used species distribution models to
assess the factors influencing the slider distribution in Italy, by analysing bioclimatic
features that can cause the transition from presence of feral adults to breeding
populations. We also evaluated whether climate change might increase the future
suitability for reproduction.

 

Location

 

Central and Northern Italy.

 

Methods

 

The distribution of slider turtle was obtained from the literature, unpub-
lished reports and field surveys. We used Maxent to build bioclimatic models.

 

Results

 

Reproductive populations are associated to a clear bioclimatic envelope
with warmer climate, more solar radiation and higher precipitations than populations
where reproduction is not observed. Several Mediterranean areas currently have
climatic features suitable for sliders. Scenarios of climate change predict the expan-
sion of these areas. In the near future (2020), the proportion of populations in areas
suitable for reproduction will dramatically increase.

 

Main conclusion

 

Our study shows that bioclimatic differences can determine the
areas where aliens become invaders. Management should be focused to these source
areas. However, climate change can increase fitness in the future, and therefore the
interactions between climate change and fitness can boost the invasiveness of this
alien species.

 

Keywords

 

Bioclimatic envelope, biological invasions, climate change, fitness, MAXENT,

 

problematic alien species, reproduction, species distribution models.

 

INTRODUCTION

 

Alien invasive species (AIS) are a major cause of biodiversity loss

(Strayer 

 

et al

 

., 2006; Ricciardi, 2007). They can negatively affect

native species through predation and competition, can diffuse

pathogens, can modify ecosystem functioning and abiotic

features of the environments (Strayer 

 

et al

 

., 2006; Ricciardi,

2007). The prevention and control of AIS is thus a priority for

conservation (Hulme, 2006).

Biological invasions can be described as a multistep process,

comprising three major phases: initial dispersal (i.e. an organism

moves long distances to areas outside its native range, for example

through human assisted dispersal); establishment of self-sustaining

populations within the non-native range; and invasion of the

new range (Richardson 

 

et al

 

., 2000; Puth & Post, 2005). However,

when species are invasive, they have strongly positive demographic

trends and are often numerous, therefore their management can

be extremely difficult and expensive (Hulme, 2006). For these
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reasons, the first stages of invasions are the most critical for

conservation (Puth & Post, 2005; Hulme, 2006). Preventing new

introductions is currently considered the most effective man-

agement tool (Leung 

 

et al

 

., 2002; Keller 

 

et al

 

., 2008). However,

some species will become introduced even in the presence of

strict protocols of prevention and screening. In these cases, a

rapid response may still stop the invasion (Hulme, 2006).

Unfortunately, studying and managing the first steps of

invasions (i.e. before that species become invasive) is often difficult.

First of all, only a small subset of introduced species become

invasive (approximately 1%: Williamson & Fitter, 1996; but see

also Suarez 

 

et al

 

., 2005), and the active control and monitoring of

all non-native species may be not feasible. Moreover, many AIS

often undergo a clear ‘lag phase’ before they show any sign of

becoming invasive (Crooks & Soulé, 1999). During lag phases,

species are usually rare; the low detection rate limits our power to

detect presence, assess demographic changes and to find the

factors determining the transition from establishment to invasion

(Hulme, 2006). Molecular genetics can provide insights into the

demography of early stages of invasions (Lindholm 

 

et al

 

., 2005;

Ficetola 

 

et al

 

., 2008), but these studies are usually performed 

 

post

hoc

 

, i.e. when species are already invasive.

Habitat modelling is a powerful approach to evaluate the

factors determining species invasions. Through modelling, data

on the distribution of AIS can be used to find the environmental

features determining species distribution, and therefore to build

maps for risk assessment (Thuiller 

 

et al

 

., 2005; see also Elith

 

et al

 

., 2006). Modelling is usually based on distribution within

the native range (Roura-Pascual 

 

et al

 

., 2004; Thuiller 

 

et al

 

., 2005;

Ficetola 

 

et al

 

., 2007b), on records in the invasive range (Bossen-

broek 

 

et al

 

., 2007; Ward, 2007; Nielsen 

 

et al

 

., 2008) or both

(Broennimann 

 

et al

 

., 2007). Nevertheless, the presence of a

species does not necessarily imply that it has positive fitness in an

environment. This can be extremely important for species that

are introduced multiple times, sometimes in suboptimal areas.

Particularly in long-lived species, adults can survive long periods

in suboptimal habitats, and may even attain high densities if

massively released, but can fail to achieve key steps of their life

cycle, such as reproduction. This can determine human-mediated

source–sink dynamics. The distinction between localities of

presence, and localities where non-native species have positive

fitness, can be the key to understanding the causes of the transition

among the different steps of invasions. However, comparisons of

fitness among areas are rarely included in models of distribution

of non-native species.

Turtles are long-lived organisms, and adults can survive for

decades in suboptimal habitats where environmental features are

unsuitable for breeding (Gariboldi & Zuffi, 1994; Spinks 

 

et al

 

.,

2003). Therefore, even if they can negatively affect native popula-

tions, the presence of non-native turtles does not necessarily

imply that a species is invasive and colonizing new habitats. The

long life cycle of turtles determines slow population dynamics

(Congdon 

 

et al

 

., 1993), making turtles particularly suitable for

the study of transition between the different steps of invasions,

and to find the factors influencing these transitions. The slider

turtle 

 

Trachemys scripta

 

 Schoepffs, 1972 is a native of Eastern

Northern and Central America, but has been introduced as a pet

in some 30 countries around the world, with several million

individuals sold during the past decades (Lever, 2003). Young

sliders are sold at a size of just a few centimetres, but can grow

quickly, and are released by owners in natural and seminatural

wetlands. The importation of 

 

T. scripta elegans

 

 has been banned

in the European Union (Commission Regulation 349/2003),

although other subspecies are still sold, and individuals traded

before the ban continue to be released in natural and seminatural

wetlands. Sliders are considered a potential threat to European

freshwater ecosystems. They compete for food and basking places

with the threatened European pond turtle 

 

Emys orbicularis

 

, and

can increase its mortality (Cadi & Joly, 2003, 2004). Moreover, at

high densities sliders can modify wetland vegetation and the

communities of macroinvertebrates and amphibians (Teillac-

Deschamps & Prevot-Julliard, 2006). However, not all the European

slider ‘populations’ are reproductively active. Reproduction has

been observed only in a limited number of localities of southern

Europe (Spain (Pleguezuelos, 2002); France (Cadi 

 

et al

 

., 2004);

Italy (Sindaco 

 

et al

 

., 2006)), while most feral sliders are assumed

to live in areas too cold for a successful reproduction. Nevertheless,

we lack large scale and quantitative analysis of environmental

features discriminating between reproductive and non-reproductive

populations. An objective assessment of these features would

identify populations that have the highest risk of becoming

invasive, and thus the priority areas for management actions such

as eradication.

The aim of this study was twofold. First, we assessed the

factors influencing the distribution of the slider turtle in Italy, by

analysing bioclimatic features that can cause the transition from

presence of feral adults to breeding populations. Ongoing

climate change is quickly modifying environmental conditions,

and can affect invasion dynamics (Thuiller 

 

et al

 

., 2007). We

therefore evaluated whether climate change might increase the

suitability for reproduction, and boost the risk of establishment

and invasion of this species in the near future.

 

METHODS

Distribution data

 

To obtain reliable distribution data over extensive areas through-

out Italy, we combined data from the literature, from regional

herpetological atlas (Lapini 

 

et al

 

., 1999; Bologna 

 

et al

 

., 2000;

Bologna 

 

et al

 

., 2003; Fiacchini, 2003; Bernini 

 

et al

 

., 2004; Ragni

 

et al

 

., 2006; Vanni & Nistri, 2006), the Italian fauna data base

(Ruffo & Stoch, 2005), the ongoing Italian herpetological

monitoring (Societas Herpetologica Italica, 2008), direct field

surveys and personal communications from field herpetologists.

We defined ‘reproducing populations’ to be populations where

hatchling emergence has been observed (e.g. Lapini 

 

et al

 

., 1999;

Ficetola 

 

et al

 

., 2003) excluding localities where females lay eggs

but hatchling emergence has never been observed.

Our study was focused on Central and Northern Italy, because

most of observations came from this area (Fig. 1). Observations

in Southern Italy were scant, and this was probably related to
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both reduced frequency of introduction and lower monitoring

effort in these areas (see Sindaco 

 

et al

 

., 2006).

We did not use data of distribution of the slider turtle within

the native range, since 

 

T. scripta

 

 has complex systematic with

strong differentiation among subspecific entities (Stephens &

Wiens, 2003). Individuals with different origin might have different

climatic tolerance, but the subspecies and the origin of individuals

introduced in Europe are often unknown and changed in time.

In these conditions, models based on the introduced range only

can be more informative (Steiner 

 

et al

 

., 2008). Therefore, our

analysis describes the realized niche of introduced populations.

 

Environmental data

 

For the climatic parameters, the CRU CL 2.0 global data set at

10

 

′

 

 

 

×

 

 10

 

′

 

 served as the base data set (New 

 

et al

 

., 2002). At the latitude

of the study area, each 10

 

′

 

 

 

×

 

 10

 

′

 

 cell corresponds to a rectangle of

approximately 13 

 

×

 

 18 km. Two temperature variables (winter

temperature: average temperature in the coldest month; summer

temperature: average temperature in the warmest month)

and annual solar radiation (Wh/m

 

2

 

/day) described the species

thermal tolerance and the availability of thermal energy.

Summed annual precipitation described the water availability. To

avoid the multicollinearity issue, we did not include other climatic

variables (such as annual temperature and seasonal precipitation)

that were strongly correlated to linear combinations of the four

climatic variables used. Furthermore, we used the human footprint

at 10

 

′

 

 

 

×

 

 10

 

′

 

, a measure of human influence on global surface,

combining data of population density, land transformation,

human access and presence of infrastructures. This information

was based on nine geographical data sets including satellite

images, vector maps and census data (Sanderson 

 

et al

 

., 2002).

Human footprint was used because the slider turtle and many

other alien species are often associated with human modified

landscapes (Ficetola 

 

et al

 

., 2004; Leprieur 

 

et al

 

., 2008).

Four climate-change scenarios were derived from HadCM3

(Hadley Centre for Climate Prediction and Research’s General

Circulation Model) for the period of 2010 to 2039 (referred to as

the 2020 scenario) to obtain estimates of likely climatic conditions

in the near future. The different global circulation model was run

using four IPCC SRES (Intergovernmental Panel on Climate

Change, Special Report on Emission Scenarios) storyline runs,

reflecting different assumptions about demographic changes,

socioeconomic and technological development (Nakicenovic &

Swart, 2000). These include A1, A2, B1 and B2, ranging from

fossil-fuel intensive to alternative futures involving rapid adoption

of new technologies. This range of scenarios gives some idea of

the range of greenhouse gas emission pathways that might be

taken during the next decades.

 

Data analysis

 

Environmental suitability was modelled using Maxent 3.1

(Phillips 

 

et al

 

., 2006; Phillips & Dudík, 2008). Maxent is a

machine learning method that estimates the distribution of a

species by finding the probability distribution of maximum

entropy (i.e. that is closest to uniform) subject to constraints

representing our incomplete information about the distribution.

The constraints are that the expected value of each environmental

variable should match its average over sampling locations

derived from environmental layers (Phillips 

 

et al

 

., 2006). The

model evaluates the suitability of each grid cell as a function of

Figure 1 Study area in Italy (pale grey), and 
distribution of localities with feral (dark grey) 
and reproducing populations (black) of 
Trachemys scripta.
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environmental variables at that cell. Some advantages of Maxent

are that it requires presence-only data, deterministic algorithms

have been developed that always converge to the optimal prob-

ability distribution, and can calculate the relative importance of

different environmental variables (Phillips 

 

et al

 

., 2006). We used

a logistic output of Maxent, with suitability values ranging from

0 (unsuitable habitat) to 1 (optimal habitat) (Phillips & Dudík,

2008). Following Pearson 

 

et al

 

. (2007), we used the 10th percentile

training presence as a suitability threshold, i.e. we assumed

that a cell is suitable if its suitability score is greater than the 10th

percentile of training presence points. We developed models

using linear, quadratic and hinge functions (Phillips & Dudík,

2008). In recent comparisons among several techniques of

prediction of species distribution, Maxent was among the

most effective methods using presence-only data, and showed a

particularly good performance when analysing data sets with a

small number of presence records (Elith 

 

et al

 

., 2006; Hernandez

 

et al

 

., 2006). The reliability of the results of Maxent has been

confirmed by its good capacity to predict novel presence localities

for poorly known species (Pearson 

 

et al

 

., 2007) and the outcome

of introductions of invasive species outside the native range

(Ficetola 

 

et al

 

., 2007b).

Using Maxent, we built two models to compare the bioclimatic

envelopes corresponding to different levels of fitness. First, we

built a model using presence data. This model describes the

environmental features needed for the presence and survival of

adults, independently from reproduction. The second model

used data on the distribution of breeding localities, and described

the environmental features required for successful reproduction

(i.e. for the establishment of naturalized populations). All models

included the five environmental variables as predictors.

We used null-models to test for significance of Maxent models

(Raes & ter Steege, 2007). For each model based on turtle dis-

tribution, we generated 99 null-distributions of random points

in the study area; the number of random points per distribution

was equal to the actual number of presence points. Next, we used

Maxent to create models relating the null-distributions to the

environmental layers. We then compared the area under the

curve of the receiver operator plot (AUC) (Manel 

 

et al

 

., 2001) of

the randomly generated models with the AUC of the models

generated using the actual distribution data. These randomly

generated models can be thus used as a null-hypothesis against

which to test the significance of species distribution models. If

the AUC of the slider turtle models was significantly higher than

the AUC of randomly generated models, it was considered as

evidence that the species distribution model performs significantly

better than expected by chance (Raes & ter Steege, 2007).

We used the jackknife procedure developed by Pearson 

 

et al

 

.

(2007) to evaluate the predictive performance of our model, i.e.

the ability to correctly predict new localities of reproduction.

Each observed locality of reproduction was removed once from

the data set and a model was built using the remaining 

 

n

 

 – 1

localities. The predictive performance was then evaluated based on

the ability of each model to correctly predict the locality excluded

from the training data set, using the 10th percentile training presence

threshold (Pearson 

 

et al

 

., 2007). This approach is valid only for

small data sets (less than 25 calibration points: Pearson 

 

et al

 

.,

2007), and was therefore applied to the analysis of reproduction.

To compare bioclimatic envelopes of presence points and of

reproducing populations, we compared the response curves

obtained using Maxent. Maxent curves provide only qualitative

estimates of differences in niches, also because confidence intervals

are not available. Nevertheless, they can provide useful insights

into differences among distribution models (Martínez-Freiría

 

et al

 

., 2008).

Finally, we used the four 2020 scenarios to project the

predicted suitability to the future climatic conditions. Esti-

mations of the future human footprint are not available.

However, it is unlikely that human footprint in Europe will

decrease in the near future, and slider turtles are positively

associated with human footprint (see results). Therefore, models

assuming a constant human footprint are conservative in respect

of the future suitability.

 

RESULTS

 

Feral populations of slider turtle were present in 121 10

 

′

 

 

 

×

 

 10

 

′

 

pixels, corresponding to 14% of the study area (Fig. 1). However,

reproduction was observed only in a small subset of localities

(16 pixels) (Fig. 1).

Bioclimatic features were different among pixels with and

without observed reproduction. Pixels with reproduction had

higher summer (unequal variance 

 

t

 

-test: 

 

t

 

57

 

 = 2.687, 

 

P

 

 = 0.009)

and winter temperature (

 

t

 

20

 

 = 2.686, 

 

P

 

 = 0.014) and more annual

radiation (

 

t

 

21

 

 = 2.462, 

 

P

 

 = 0.023) than pixels where reproduction

was not observed. We did not observe significant differences in

annual precipitation and human footprint (both 

 

P

 

 > 0.75).

 

Suitability models

 

The variables most important to explain the presence of feral

populations were summer temperature (61.1% of explained

variation accounted), and human footprint (16% of variation);

annual precipitation and solar radiation accounted for 11.2 and

10.5% of variation, respectively, while winter temperature

explained only a minor portion of variance. The presence of feral

populations of slider turtles was positively related to summer

temperature, annual precipitation and human footprint, while

the relationship with solar radiation showed a less clear, non-

linear pattern (Fig. 2). The areas with the highest probability of

containing feral populations were mostly in Northern Italy, close

to the largest cities such as Milan, Turin and Venice, and in

Central Italy around the cities of Rome and Florence (Fig. 3).

The AUC of this model was 0.828, and was significantly higher

than the null-model AUC (median = 0.603; 95% CI = 0.564–

0.644). This indicates a good fit of the model.

The model describing the features of reproduction areas was

quite different. The most important variable to explain the

presence of reproducing populations was summer temperature

(81.5% of variation). Annual radiation and precipitation

explained 7.4% and 6.5% of variation, respectively, while human

footprint and winter temperature explained only a minor
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portion of variance. The reproduction of slider turtles was

related to areas with high summer temperature, solar radiation

and annual precipitation (Fig. 2). The AUC of this model was

0.868, and was significantly higher than the AUC of null-model

(median = 0.725, 95% CI = 0.640–0.803). This indicates a good

fit of the model. The jackknife procedure showed that the model

had a good capacity to predict new localities of reproduction

(predictive success = 0.75, average probability of success under

randomness = 0.32, 

 

P

 

 = 0.0005).

The areas most suitable for reproduction did not correspond

exactly to the areas where the probability of presence of feral

populations is highest (Fig. 3). Probability of reproduction was

highest in the Mediterranean and coastline areas. Using the 10th

percentile training presence threshold, 42% of the study area was

suitable for the presence of slider turtles, while only 27% was

suitable for reproduction (Fig. 3).

The comparison of response curves confirmed the differences

between the bioclimatic niches obtained using presence and

reproduction data (Fig. 2). Slider turtle reproduction showed a

more positive relationship with solar radiation, summer and

winter temperature than slider turtle presence.

 

Future suitability

 

The projection of suitability for reproduction using the bioclimatic

features of the 2020 scenarios showed a clear increase of suitable

areas (Fig. 4, see Appendix S1 in Supporting Information).

Despite minor differences among the four 2020 scenarios (Fig. 4,

Figure 2 Results of environmental suitability models: relationships between environmental features and presence (continuous line) or 
reproduction (broken line) of Trachemys scripta.

Figure 3 Results of environmental suitability models: predicted probability of (a) presence and (b) reproduction of Trachemys scripta. The 
different suitability thresholds (0.258 and 0.423) correspond to the 10th percentile training presence thresholds of the presence and reproduction 
models, respectively.
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Appendix S1), all of them predicted an expansion of suitable

areas far from the coastline, in the Northern regions and in most

of areas where feral populations are currently present (compare

with Fig. 1). For example, following the A2 scenario, 87% of the

121 pixels where feral populations are currently present will be

suitable for reproduction in 2020.

 

DISCUSSION

 

Under present-day environmental conditions, the bioclimatic

envelope entailed by the presence of feral populations of slider

turtle is markedly different from the envelope of populations

where reproduction actually occurs. This indicates that most of

the feral populations are introduced and survive in suboptimal

environment, where bioclimatic conditions currently are not

suitable for reproduction. However, lack of reproduction in

many feral populations (Luiselli 

 

et al

 

., 1997; Bringsøe, 2001;

Prévot-Julliard 

 

et al

 

., 2007) does not mean that the slider turtle

will quickly become extinct before establishment. These long-

lived species can persist for decades and thus influence the

native species even in absence of actual reproduction. Our

analysis clearly shows that the environmental features required

for reproduction are currently present in several areas of

Mediterranean Europe (Fig. 3), and that ongoing climate change

will likely expand the areas of suitability in the near future (Fig. 4,

Appendix S1).

The distribution of reproductive populations delineates a

bioclimatic envelope corresponding to areas with high summer

temperature, intense solar radiation and rather high annual

precipitation (Fig. 2). The identification of a clear envelope, distinct

from the one of non-reproductive populations, shows that

reproduction does not occur in a random subset of presence

localities, but is instead related to well-defined environmental

parameters. The association with high temperature and solar

radiation likely describes physiological limitations and the large

amount of thermal energy required for embryo development.

For example, the optimum temperature for slider activity is

25–26 

 

°

 

C, and the optimum temperature for embryo develop-

ment is above 25 

 

°

 

C (Cagle, 1950; Morreale & Gibbons, 1986;

Cadi 

 

et al

 

., 2004). Our model describes very well these

requirements, and maximum suitability for both presence and

reproduction was at about 26 

 

°

 

C (Fig. 2b). Moreover, embryos

require a wet substrate for correct development (Tucker &

Paukstis, 2000). Therefore, the most arid Mediterranean areas

are not suitable for reproduction, which explains the positive

relationship with annual precipitation. High precipitation can be

also associated to the presence of wetlands, with obvious positive

effects on populations of a freshwater turtle. Precipitation,

temperature and solar radiation are key drivers of the energy/

water balance in ectotherms, and can therefore be important also

for other invaders (e.g. reptiles, amphibians and crustaceans).

Human footprint was only positively correlated to species

presence but not to species reproduction. This is intuitive, as

species introduction into the environment occurs through pet

release or escape and pets are most likely to be kept in human-

modified areas, but human modifications of landscape do not

have a positive effect on turtle reproduction.

The smallest predicted range for reproduction (compare

Fig. 3a,b) suggests that adult sliders can survive under a wide

range of environmental conditions, but they have more stringent

requirements for critical phases of life history, such as reproduction.

The AUC of models of reproductive populations (0.868) was

higher than the AUC of localities of presence (0.828). This

further confirms that reproductive populations have a small but

well-defined niche, because distribution models of generalist

species often have lower AUC (Brotons 

 

et al

 

., 2004; Allouche 

 

et al

 

.,

2006). Species distribution models usually rely on occurrence

data, without any knowledge of the actual fitness of the population

in those areas. However, a more complete modelling of ecological

niche should define the environmental conditions where the

fitness of individuals is greater than one (Guisan & Thuiller,

2005; Kearney, 2006). Simply considering distribution records

does not allow full delineation of a species fundamental niche

(Kearney, 2006), and can predict suitability into too large areas.

Moreover, the projection of bioclimatic models in the future, or

into new geographical areas, is a critical phase of the application

of bioclimatic models to conservation (Guisan & Thuiller, 2005).

The differences between the suitability obtained using presence

records, and the one obtained using fitness measures could

be amplified when bioclimatic niches are projected to new

conditions.

For these reasons, using fitness measures when available

instead of occurrence data can lead to great improvement in the

quality of species distribution models. The improvement can be

particularly valuable for alien species, for species with high

vagility that are often observed in suboptimal environments, and

for species with strong source-sink dynamics. The availability of

modelling techniques having good performance even with a few

presence localities, such as Maxent (Hernandez 

 

et al

 

., 2006), can

be particularly useful, because collecting data on species

presence/absence is clearly more cost-effective than comparing

fitness among localities.

Figure 4 Projected suitability for reproducing populations of 
Trachemys scripta under future climatic conditions (2020, scenario 
A2). Results of projections using different scenarios (A1, B1 and B2) 
are extremely similar and are shown in Appendix S1.
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From introduction to establishment: conservation 
implications

Only a subset of feral populations is currently breeding, and their

reproductive success is probably not very high. Nevertheless, the

small number of localities where reproduction has been

ascertained should not be used to underestimate the risk of

establishment of slider turtle populations. First, detecting

reproduction of freshwater turtles can be difficult, because

juveniles are less detectable than adults (Zuffi, 2000) and small

turtles are still released in natural wetlands by unconcerned

people. The actual number of reproductive populations is

probably larger than that reported here (see also Cadi et al.,

2004). Second, some peculiar features of introduced sliders may

increase their recruitment potential. Turtles sold as pets are

reared in farms with artificially high temperature, to accelerate

the development rate. As sex determination in the slider is

temperature dependent, the sex ratio of introduced turtles is

unbalanced, with a prevalence of females (Cadi et al., 2004). If

environmental conditions are suitable, this high proportion of

females may increase the number of recruits of introduced

populations (see Girondot et al., 1998).

Most importantly, ongoing global climate change will probably

boost the fitness of introduced individuals in the near future.

Long lived animals can survive decades in suboptimal habitats.

As the longevity of sliders in nature is at least 30 years (Gibbons

& Semlitsch, 1982), the individuals that are released now can

survive for 20 years or so in suboptimal areas, where bioclimatic

features are currently unsuitable for reproduction. These feral

individuals may successfully reproduce during particularly warm

years, or in the near future, when suitability will increase

(compare Figs 1 and 4 and the Appendix S1). The successful

reproduction of these populations corresponds to the transition

from introduced individuals to established alien populations. In

many cases, alien species became invasive and problematic after

lag phases that may last decades, and then suddenly explode

(Crooks & Soulé, 1999). Climate change can be a key factor

triggering this process.

This is therefore a case where species distribution models have

direct and practical implications for the management. Immediate

management actions (such as the eradication of feral individuals)

have high probability of success. Currently, many non-native

populations of the slider are non-reproductive. These feral

sliders can have negative effects on native biodiversity (Cadi &

Joly, 2003, 2004; Teillac-Deschamps & Prevot-Julliard, 2006),

but their eradication can be successful even with moderate

effort, since current recruitment is zero, and trapping techniques

have a high success rate on adult freshwater turtles (Fowler &

Avery, 1994). However, if the species becomes naturalized,

eradication will be much more difficult and costly. Management

efforts should first focus on the areas where suitability for

reproduction is highest (Fig. 3b), because these areas are sources

of biological invasion. It is also important to act promptly, to

remove individuals from areas where suitability is predicted

to increase in the near future. Off course, these management

actions will be successful only if education programs will help

stopping the release of new turtles in natural environments

(Ficetola et al., 2007a).

It is widely accepted that the ongoing global climate change

can exacerbate the issues of biological invasions, but we are far

from a full understanding of the mechanisms facilitating the

response of AIS to the change (Thuiller et al., 2007; Richardson &

Pysek, 2008). Differences in fitness among areas of the introduced

ranges can strongly interact with climatic change, complicating

the invasion dynamics, and should be considered in models trying

to predict the future of invasions.
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ABSTRACT

 

Aim

 

The theory of island biogeography predicts species richness based on
geographical factors that influence the extinction–colonization balance, such as
area and isolation. However, human influence is the major cause of present biotic
changes, and may therefore modify biogeographical patterns by increasing
extinctions and colonizations. Our aim was to evaluate the effect of human activities
on the species richness of reptiles on islands.

 

Location

 

Islands in the Mediterranean Sea and Macaronesia.

 

Methods

 

Using a large data set (

 

n

 

 = 212 islands) compiled from the literature, we
built spatial regression models to compare the effect of geographical (area, isolation,
topography) and human (population, airports) factors on native and alien species.
We also used piecewise regression to evaluate whether human activities cause devia-
tion of the species–area relationship from the linear (on log–log axes) pattern, and
path analysis to reveal the relationships among multiple potential predictors.

 

Results

 

The richness of both native and alien species was best explained by models
combining geographical and human factors. The richness of native species was
negatively related to human influence, while that of alien species was positively
related, with the overall balance being negative. In models that did not take into
account human factors, the relationship between island area and species richness
was not linear. Large islands hosted fewer native species than expected from a linear
(on log–log axes) species–area relationship, because they were more strongly affected
by human influence than were small islands. Path analysis showed that island size
has a direct positive effect on reptile richness. However, area also had a positive
relationship with human impact, which in turn mediated a negative effect on richness.

 

Main conclusion

 

Anthropogenic factors can strongly modify the biogeographical
pattern of islands, probably because they are major drivers of present-day extinc-
tions and colonizations and can displace island biodiversity from the equilibrium
points expected by theory on the basis of geographical features.
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INTRODUCTION

 

MacArthur and Wilson’s theory of island biogeography

(MacArthur & Wilson, 1967) is one of the major theoretical

foundations of biogeography and ecology (Whittaker &

Fernández-Palacios, 2007). The theory of island biogeography

assumes that species richness on oceanic islands depends on the

equilibrium between species extinction, species colonization and

speciation. Simple geographical features, such as island size and

isolation, are primary drivers of the extinction–colonization

balance, thus determining the species richness of islands. Even

though more complex models have been proposed, including

factors such as energy availability (Wright, 1983; Kalmar &

Currie, 2006), habitat heterogeneity (Diamond, 1969; Kadmon

& Allouche, 2007) and disturbance (Whittaker, 1995), predictions

from island biogeography models have repeatedly been confirmed
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by both experimental and observational studies all over the

world (Whittaker & Fernández-Palacios, 2007): area and

isolation are still considered the key drivers of insular richness

(e.g. Kreft

 

 et al

 

., 2008).

Habitat alteration and biological invasions are major causes of

the current biodiversity crisis: human activities are thus directly

responsible for most present-day extinctions, changes in

community assemblies and modifications in the geographical

ranges of species (Sala

 

 et al

 

., 2000; Wilson, 2002). Islands can be

particularly vulnerable to human influences (Steadman, 1993;

Whittaker & Fernández-Palacios, 2007). It is therefore likely that

human activities are major drivers of the current extinction–

colonization processes in oceanic islands. Several studies have

documented biotic changes caused by humans, showing strong

relationships between human activities, extinctions and the

presence of alien species (Diamond, 1969; Chown

 

 et al

 

., 1998;

Blackburn

 

 et al

 

., 2004; Blackburn

 

 et al

 

., 2008). However,

large-scale studies are scarce, and we are far from a clear

understanding of the effects of human factors on overall

biogeographical patterns.

Here, we use an extensive database on reptiles in the

Mediterranean Sea and Macaronesia (Fig. 1) to investigate

whether anthropogenic factors can modify the biogeographical

pattern of islands, and can cause a deviation of the species–area

relationship from the expected linear (on log–log axes) pattern.

The study area is a climatically homogeneous region, and some

authors consider Macaronesia to be part of the Mediterranean

area (Daget, 1977; Cox

 

 et al

 

., 2006). The islands of the Mediterranean

Sea share a large proportion of reptiles with mainland Europe

and Africa, but there are also several endemic species, particularly

of lizards (e.g. 

 

Algyroides fitzingeri

 

,

 

 Archaeolacerta bedriagae

 

 and

 

Podarcis pityusensis

 

). The native reptiles of Macaronesia comprise

endemic species of the genera 

 

Tarentola 

 

and

 

 Chalcides

 

, and by the

endemic genus 

 

Galliota

 

. Mediterranean islands have been subject

to strong human influence for millennia (Blondel & Aronson,

1999), and constitute an ideal laboratory for evaluating the

long-term effects of human activities on biodiversity patterns.

We tested three hypotheses describing the effect of human

impact on the diversity of reptiles in Mediterranean islands. First,

we evaluated whether human impact affects the biogeographical

relationship of native species, by determining a lower species

richness than predicted on the basis of classical species–area

relationships. Second, we evaluated whether human impact is

the major determinant of the richness of alien species. Finally, we

tested whether the loss of species due to humans is compensated

by the gain of alien species caused by human impact (Sax

 

 et al

 

.,

2002).

 

METHODS

Data

 

We used faunistic atlases and the scientific literature (Lanza

& Poggesi, 1986; Castanet & Guyetant, 1989; Delaguerre &

Cheylan, 1992; Pleguezuelos

 

 et al

 

., 2002; Sultana & Falzon, 2002;

Anonymous, 2003; Malkmus, 2004; Sindaco

 

 et al

 

., 2006) to

obtain data on the reptile species composition on 212 islands of

France, Italy, Malta, Portugal, Spain and Tunisia (Fig. 1). Following

the literature (Pleguezuelos

 

 et al

 

., 2002; Lever, 2003; Sindaco

 

et al

 

., 2006), species were classified either as native or as introduced

by humans. For each island we obtained the area and the

maximum elevation (a surrogate of habitat heterogeneity; e.g.

Kreft

 

 et al

 

., 2008) using a variety of sources, including the original

references, atlases, topographical maps and geographical

publications, and we measured isolation as the distance from the

continent or (if appropriate) from the nearest ‘large island’

(Corsica, Sardinia or Sicily). For each island, we also obtained

human population size (years 2003–07) and the presence of

airports from national statistical databases, atlases and geographical

publications. These two variables were used to measure the

human impact on the island. We considered airport presence as a

surrogate measure of the intensity of commercial and human

exchanges. Sea shipping may be more important than shipping

by aircraft on islands. However, since nearly all the inhabited

islands have a port, its presence could not be used as an

independent variable. In our analysis, we included only islands

with a surface 

 

≥

 

 1 ha; this approximately corresponds to the size

of the smallest islands inhabited by humans; islands with this

area can host large population sizes of some reptiles (e.g. Buckley

& Jetz, 2007; Pérez-Mellado

 

 et al

 

., 2008).

Figure 1 Study area and distribution of 212 
analysed islands. Because of geographical 
proximity, several points are superimposed.
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Statistical analyses

 

The variation of environmental features and that of species

richness (see Fig. 2) are spatially autocorrelated, and the presence

of spatial autocorrelation may bias the results of classical statistical

analyses (Dormann, 2007). In preliminary analyses, the residuals

of ordinary least squares regression were significantly autocorrelated,

particularly at small spatial scales (

 

P 

 

< 0.05 at scales up to

300 km: Fig. 2). For this reason, we analysed the data using

spatial eigenvector mapping (SEVM). This is a recently developed

method allowing the translation of a spatial arrangement of data

points into explanatory variables capturing the spatial effects

(Dormann

 

 et al

 

., 2007). In SEVM, eigenvectors reducing the

spatial autocorrelation of residuals are computed and then

included as spatial predictors into generalized linear models. A

recent comparison among statistical methods accounting for

spatial autocorrelation showed that SEVM is one of the most

flexible methods and is very efficient at removing residual spatial

autocorrelation (Dormann

 

 et al

 

., 2007). We performed eigenvector

selection following Griffith & Peres-Neto (2006). In our analyses,

we carried out model selection based on the Akaike information

criterion (AIC); therefore the pre-specified models (see below)

were part of the eigenvector selection process. SEVM successfully

removed spatial autocorrelation from the residuals of our models

(Fig. 2).

We then built a series of generalized linear models including

richness of native and/or introduced species as dependent

variables, five explanatory variables describing island geography

and human presence as independent variables and the SEVM

eigenvector(s). Species richness, island area, elevation, isolation

and human populations were log-transformed to improve the

normality of residuals. We transformed the richness of alien

species using log(

 

x

 

 + 0.5), since in several islands there were no

alien species. Species richness is a count variable, therefore

Poisson models can also be appropriate. However, the results of

Poisson and normally distributed models were qualitatively very

similar; we therefore report the models with normal errors only.

We used a model selection approach to evaluate the support of

three different models, corresponding to three potential hypotheses

explaining the pattern of reptile richness. Our first model

(geographical-only model) hypothesized that geographical

features (area, isolation and elevation) are the major drivers of

species richness; this corresponds to the classical model of

island biogeography. Our second model (human-only model)

hypothesized a major influence of anthropogenic factors (total

human population and the presence of airports). Finally, the

geographical + human model hypothesized that species richness

is best explained by a combination of both geographical and

anthropogenic factors. We then used the AIC to rank models

according to the strength of support from the data (Burnham &

Anderson, 2002). We used Akaike weights to assess the likelihood

of the alternative models, and we calculated evidence ratios to

compare the relative likelihood of the different hypotheses

(Burnham & Anderson, 2002).

We used piecewise regression (Muggeo, 2003; Toms &

Lesperance, 2003) to evaluate the presence of threshold effects

in the relationship between island area and species richness.

Piecewise regression allows the simultaneous evaluation of the

location and the standard error of break points in generalized

linear models, and an evaluation of whether the addition of such

break points improves the fit of the models.

Our independent environmental variables were moderately

collinear, since larger islands had higher elevations and often

hosted larger human populations and airports. The strongest

correlations were between area and human population (

 

r = 

 

0.84),

between human population and the presence of airports

(

 

r 

 

= 0.72) and between area and altitude (

 

r 

 

= 0.71). Hence, we

calculated the variance inflation factor for all regression models.

For all models and variables, the variance inflation factor

was always less than 5, indicating that collinearity does not

pose major problems for our models (Bowerman & O’Connell,

1990).

Figure 2 Moran’s I correlograms for (a) richness of native reptiles; 
(b) richness of non-native reptiles and (c) overall richness of reptiles, 
measured. Bold black lines, number of species; grey lines, residuals 
of ordinary least squares regression (OLS); thin black lines, residuals 
of spatial eigenvector mapping (SEVM).
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Due to correlation among island area, human population and

the presence of airports, it is difficult to tease apart their relative

effect on species richness, and therefore to evaluate whether

human activities modify the relationship between species

richness and area. We therefore used path analysis (Bryman &

Cramer, 1990; Bollen & Long, 1993) to compare three alternative

models describing the relationship between island area and

native species: (m1) island size affects species richness directly

and through its relationship with human impact (i.e. human

impact modifies the species–area relationship); (m2) both island

size and human impact affect species richness, but there is no

co-action among them; (m3) island size directly affects species

richness, while human impact does not have an effect. Path

analysis is an extension of regression models; it allows us to

provide quantitative estimates of the causal connections among

variables, in relation to explicitly formulated causal models,

represented in the form of path diagrams (Bryman & Cramer,

1990). We performed the analyses with R 2.5 (R Development

Core Team, 2007) using the packages 

 

spdep

 

, 

 

car

 

, 

 

segmented

 

 and

 

sem

 

. We built correlograms using 

 

sam

 

 3.0 (Rangel

 

 et al

 

., 2006).

 

RESULTS

Richness of native species

 

The number of native species per island ranged from 1 to 15. The

‘geographical-only’ model explained a substantial proportion of

variation (

 

R

 

2

 

 = 0.51) of the richness of native reptiles (Table 1).

Species richness related positively to island area and elevation,

and negatively to isolation. The ‘human-only’ model explained

a considerably lower proportion of variation (

 

R

 

2

 

 = 0.24).

However, the model with the highest fit was the one assuming

that both geographical and human factors drove the richness of

native reptiles (

 

R

 

2

 

 = 0.59). This geographical + human model

showed an AIC value substantially lower than that for either

the geographical-only or human-only model, and had an AIC

weight > 0.999 (Table 1). The AIC-evidence ratio between the

geographical + human and the geographical-only model was

about 11 million, meaning that the geographical + human

model was about 11 million times more likely to be the best

model. The evidence ratio between the geographical + human

and the human-only model was even larger.

According to the geographical + human model, the richness

of native reptiles increases with island area and elevation, and

decreases with isolation. However, when taking into account

these geographical variables, species richness is lower on islands

with large human populations and with airports. The slope of

the species–area relationship (

 

z

 

) on log–log scale for the

geographical-only model was 0.08 [95% confidence interval

(CI) = 0.06–0.1], and was much lower than the 

 

z

 

-value obtained

when using the model that takes into account human effects

(geographical + human model: 

 

z 

 

= 0.14, CI = 0.12–0.17).

Human and geographical variables might also show interac-

tive effects. When we tested for two-way interactions, we found a

significant interaction between distance from the continent and

human population (

 

F

 

1,202

 

 = 12.8, 

 

P 

 

= 0.0004), indicating that the

negative effect of human population was particularly strong on

the most isolated islands.

If anthropogenic factors were not included in the regression

model, the relationship between log(area) and log(species

richness) was not linear. A piecewise regression with a break

point (Fig. 3a) fitted the data significantly better than did a linear

model (

 

F

 

2,205

 

 = 8.5, 

 

P 

 

= 0.0003). The estimated position of the

break point was area = 1.5 km

 

2

 

. That is, the slope of the species–

area relationship changes on islands larger than 1.5 km

 

2

 

. Based

on the AIC-evidence ratio, the model including a break point was

623 times more likely than the linear model. In the model including

the break point, the 

 

z

 

-value for islands with an area < 1.5 km

 

2

 

was 0.15 (CI = 0.11–0.18), while it was significantly smaller for

larger islands (

 

z 

 

= 0.04, CI = 0.01–0.08). The break point

remained significant in a model that also included isolation and

elevation (

 

F

 

2,203

 

 = 10.5, 

 

P 

 

< 0.0001).

However, if anthropogenic factors were added to the model,

the piecewise regression did not converge to any break point.

This strongly suggests that large islands have reduced 

 

z

 

-values

because of the negative effects of human influence. It should be

noted that the break point of 1.5 km

 

2

 

 corresponds to an island

size above which human impact rises abruptly. In our study, only

3% of islands smaller than 1.5 km

 

2

 

 had permanent inhabitants,

and only one had an airport. Conversely, 80% of islands larger

than 1.5 km

 

2

 

 were inhabited (Fig. 3b), and 26% had an airport.

Table 1 Regression models relating richness of native reptiles to 
geographical and human factors.

b F d.f. P

Model: geographical-only

ΔAIC = 32.47; w < 0.0001; R2 = 0.512

Area* 0.08 61.1 1 < 0.001

Isolation* –0.04 4.0 1 0.048

Elevation* 0.06 8.0 1 0.005

SEVM eigenvectors 3

Residuals 205

Model: human-only

ΔAIC = 119.65, w < 0.0001, R2 = 0.239

Human population* 0.05 21.7 1 < 0.001

Airport –0.02 0.2 1 0.717

SEVM eigenvectors 3

Residuals 206

Model: geographical + human

ΔAIC = 0, w > 0.999, R2 = 0.589

Area* 0.14 105.8 1 < 0.001

Isolation* –0.04 5.7 1 0.018

Elevation* 0.06 9.5 1 0.002

Human population* –0.05 17.9 1 < 0.001

Airport –0.11 4.5 1 0.036

SEVM eigenvectors 3

Residuals 203

b, regression coefficients; ΔAIC, difference between a candidate model
and the model with the lowest Akaike information criterion (AIC);
w, AIC weight of the model; SEVM, spatial eigenvector mapping.

*This variable was log-transformed for the analysis.
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Inhabited islands were larger than uninhabited (

 

t

 

-tests: 

 

t

 

210

 

 = 5.7,

 

P

 

 < 0.0001); similarly those with airports were larger than those

without (

 

t

 

210

 

 = 8.7, 

 

P 

 

< 0.0001). Regression lines obtained

analysing separately inhabited and uninhabited islands are

shown in Fig. 3(b).

Path analyses showed that the model m1 (i.e. island area

affects species richness directly 

 

and

 

 through its relationship with

human impact) was the best path model (Fig. 4a). Island size had

a direct positive effect on reptile richness. However, area also had

a positive significant relationship with human population and

the presence of airports, which in turn had a negative effect on

richness. Therefore, area had a negative indirect effect on

richness, mediated by its relationship with human impact

(Fig. 4a). Model m1 had a significantly better fit than the less

complex models m2 (Fig. 4b) and m3 (Fig. 4c) (m1–m2: likelihood

ratio test:  = 5.489, 

 

P 

 

= 0.019; m1–m3:  = 457.87, 

 

P 

 

< 0.0001).

Model m2 had a significantly better fit than model m3

(  = 452.38, 

 

P 

 

< 0.0001). Path coefficients were consistent with

m1 in more complex models as well, taking into account the

effect of elevation and isolation.

 

Alien species

 

The number of alien species per island ranged from 0 to 7. Most

of the alien species were introduced in historical times from mainland

Europe, northern Africa and other areas of the Mediterranean

basin. Only a few alien species, such as the North American slider

turtle, 

 

Trachemys scripta

 

, originated from different continents.

The geographical + human model was the best, according to

AIC values, and explained a substantial proportion of variance

(

 

R

 

2

 

 = 0.496). In this model, the number of alien species is highest

on larger islands and on islands with airports (Table 2). The

evidence ratio indicates that support for the geographical-only

and of the human-only models is very low, since they were more

than 1500 times less likely than the geographical + human

model. We did not observe significant interactions between

human and geographical factors.

 

Total number of species

 

Finally, to evaluate whether the increase in species richness

caused by alien species compensates for the loss caused by

Figure 3 Relationship between island area and richness of native 
reptiles. (a) Piecewise linear regression, analysing all islands. 
(b) Linear regressions obtained analysing separately islands 
uninhabited (grey line, empty dots) and inhabited by humans 
(black line, filled dots). For uninhabited islands, z = 0.14; for 
inhabited islands, z = 0.08.

χ1

2 χ5

2

χ4

2

Table 2 Regression models relating richness of non-native reptiles 
to geographical and human factors.

b F d.f. P

Model: geographical-only

ΔAIC = 14.66; w = 0.0007; R2 = 0.449

Area* 0.07 46.6 1 < 0.001

Isolation* 0.03 2.1 1 0.132

Elevation* 0.01 0.2 1 0.673

SEVM eigenvector 1

Residuals 207

Model: human-only

ΔAIC = 27.53, w < 0.0001, R2 = 0.401

Human population* 0.04 21.5 1 < 0.001

Airport 0.25 18.6 1 < 0.001

SEVM eigenvector 1

Residuals 208

Model: geographical + human

ΔAIC = 0, w = 0.999, R2 = 0.496

Area* 0.04 6.1 1 0.014

Isolation* 0.02 0.8 1 0.354

Elevation* 0.01 0.1 1 0.739

Human population* 0.02 1.4 1 0.223

Airport 0.19 11.5 1 < 0.001

SEVM eigenvector 1

Residuals 205

b, regression coefficients; ΔAIC, difference between a candidate model 

and the model with the lowest Akaike information criterion (AIC); 

w, AIC weight of the model; SEVM, spatial eigenvector mapping.

*This variable was log-transformed for the analysis.
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human presence (Sax et al., 2002), we built a model analysing

total species richness, including both native and alien species.

The total number of species per island ranged between 1 and 18.

Once again, the best model included both human and geograph-

ical factors (Table 3). The total number of species was higher on

large, high-elevation islands, and was lower on islands with a

dense human population. This strongly suggests that an increase

in alien species does not compensate for a decrease in species

richness caused by human influence. Isolation and airport pres-

ence did not have a significant effect in this model, probably

because they influenced native and alien species in opposite

directions (see Tables 1 & 2). When we tested for interactions,

we found a significant interaction between distance from the

continent and human population (F1,202 = 4.8, P = 0.03), similar

to the one observed for native species.

Similar to the model analysing native species, if anthropogenic

factors were not included in the model, the relationship between

log(area) and log(species richness) was not linear. A relationship

with a break point fitted the data significantly better than a linear

model (F2,206 = 4.7, P = 0.01), and its shape was similar to that

estimated for native species (small islands, z = 0.21, CI = 0.16–

0.27; large islands, z = 0.10, CI = 0.06–0.15). The estimated

position of the break point was very close to that estimated for

the data set including only native species (1.03 km2), but the

break point was not present if anthropogenic factors were

included in the model. This further confirms that alien species

do not compensate for the decrease in species richness related to

human influence.

DISCUSSION

Our results show that human impact can strongly influence the

pattern of island biogeography, and that it plays an important

role in explaining the distribution of both native and alien

species. Islands with high human impact host fewer native

species than would be expected from a classical, linear biogeo-

graphical relationship, while they have an increased number of

alien species. In other words, human impact seems to modify

the biogeographical pattern, increasing the number of recent

Figure 4 Path diagrams, representing three 
models of the relationships between island 
area, human population, presence of airports 
and richness of native reptiles. (a) Full model, 
assuming that island size affects species 
richness directly and through its relationship 
with human impact (model m1 in the 
Methods). (b) Both island size and human 
activities affect species richness, but there is no 
co-action among them (model m2). (c) Island 
size directly affects species richness, while 
human activities do not have an effect (m3). 
The model in (a) performed significantly 
better than the alternative models (see 
Results). The numerical values are the path 
coefficients.

Table 3 Regression models relating the overall richness of reptiles 
(natives + non-natives) to geographical and human factors.

b F d.f. P

Model: geographical-only

ΔAIC = 23.4; w < 0.0001; R2 = 0.580

Area* 0.13 87.2 1 < 0.001

Isolation* –0.03 1.2 1 0.282

Elevation* 0.08 9.0 1 0.003

SEVM eigenvectors 2

Residuals 206

Model: human-only

ΔAIC = 102.4, w < 0.0001, R2 = 0.319

Human population* 0.08 24.6 1 < 0.001

Airport 0.08 0.8 1 0.372

SEVM eigenvectors 3

Residuals 206

Model: geographical + human

ΔAIC = 0, w > 0.999, R2 = 0.589

Area* 0.19 95.2 1 < 0.001

Isolation* –0.04 2.8 1 0.095

Elevation* 0.11 15.2 1 < 0.001

Human population* –0.06 12.1 1 < 0.001

Airport –0.12 2.9 1 0.090

SEVM eigenvectors 3

Residuals 203

b, regression coefficients; ΔAIC, difference between a candidate model 

and the model with the lowest Akaike information criterion (AIC); 

w, AIC weight of the model; SEVM, spatial eigenvector mapping.

*This variable was log-transformed for the analysis.
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colonizations (Blackburn et al., 2008) and altering the pattern of

extinction; thus it can displace island biodiversity from the

equilibrium points expected on the basis of geographical features

alone (MacArthur & Wilson, 1967). Path analysis provides

insights into the complex mechanisms driving the richness of

native species. On the one hand, island area has a positive, direct

effect on reptile richness. On the other hand, large islands suffer

the strongest human impact, which in turn negatively affects

species richness (Fig. 4a). Therefore, human impact mediates an

indirect negative relationship between island area and the

richness of native reptiles.

Other studies have used smaller data sets to show that islands

hosting large human populations have more alien species, most

probably because on these islands aliens have higher risk of

introduction and/or a lower probability of extinction after

establishment (Chown et al., 1998; Sax et al., 2002; Blackburn

et al., 2008). Our analysis confirms that human population and

exchanges are major factors explaining the distribution of alien

species. However, an important role of natural processes in the

establishment of introduced species cannot be ruled out

(Table 2). After accounting for human influence, the largest

islands still have more alien species, suggesting that island area

increases the possibility of establishment of propagules (Chown

et al., 1998; Sax et al., 2002; but see also Blackburn et al., 2008).

However, human influence was not limited to an increase

in the number of alien species, since the biogeographical

relationship of native species seems to have been modified:

inhabited islands had fewer native species than expected,

assuming the usual species–area relationship. This was particularly

evident on large islands (Fig. 3), which host the largest human

populations. Other studies have found that the establishment of

introduced species compensated for recent extinctions on

islands, with no net change or even an increase of the overall

species richness per island (Sax et al., 2002). Conversely, the

richness of Mediterranean reptiles was negatively related to

human influence, even when native and alien species were

summed (Table 3). This may indicate that insular reptiles may be

particularly prone to extinction and/or that a smaller number of

species has been introduced compared with other groups.

Recent extinctions of reptiles on Mediterranean islands are

poorly documented due to the lack of fossil remains and the

paucity of studies (e.g. Capula et al., 2002), and the pattern of

extinction can often be estimated only from indirect evidence

(e.g. Foufopoulos & Ives, 1999). Nevertheless, on most islands,

the currently ongoing decline of several species is clearly related

to human influence. For instance, 67% of European terrestrial

reptiles that are critically endangered by extinction are island

endemics (IUCN, 2007). Several species are nearly extinct on the

largest, human-inhabited islands because of human-induced

factors such as alien species, predatory pets and pests (such as

cats and rats) and habitat loss, and survive only in the smallest,

uninhabited satellite islands (Capula et al., 2002; Cox et al., 2006;

Pérez-Mellado et al., 2008). Indeed, in temperate regions humans

tend to settle in areas with the highest biodiversity (Stohlgren

et al., 2006); therefore, it is very unlikely that the reduced

richness of reptiles in human-inhabited islands arises because

these islands naturally host a small number of native species.

Despite the fact that we do not have direct data on historical

extinctions, this reduced richness supports the idea that the

smaller number of species on human-inhabited islands is

probably due to a severe rise in the extinction rate.

An intense debate is ongoing in biogeography regarding the

shape of species–area relationships. It has been proposed that

natural ecological and geographical factors may affect the

linearity of the relationships, yet evidence of deviation from a

linear pattern (on log–log axes, i.e. a power law) is controversial

(Lomolino, 2000, 2002; Williamson et al., 2001). Some data sets

suggest that the slope of the species–area relationship may

decrease on large islands, and might even approach an asymptote

(Lomolino, 2002; Kreft et al., 2008). The strong relationship

between human factors and species richness is probably

widespread at the global scale, and we expect it to occur in other

insular systems. Human influence may thus be an explanation of

deviations from a simple linear pattern (e.g. Fig. 3). This hypothesis

requires investigation across different groups and geographical

areas, using data sets large enough to allow for testing of multiple

hypotheses with enough statistical power.

Crutzen (2002) suggests that we are in a new geological era,

the ‘Anthropocene’, in which humans are major drivers of global-

scale processes, from atmospheric changes to biotic extinctions.

Humans now rival natural geological and ecological processes in

determining biodiversity at the global scale, and the present-day

species distribution cannot be exhaustively analysed without

considering human impact (Nogués-Bravo et al., 2008). As

macroecology becomes a vital tool in the study of global change

(Kerr et al., 2007), human influence should be integrated fully

into biogeographical analyses for a more complete understand-

ing of large-scale patterns and processes.
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ABSTRACT

Aim The incompleteness of information on biodiversity distribution is a major

issue for ecology and conservation. Researchers have made many attempts to

quantify the amount of biodiversity that still remains unknown. We evaluated

whether models that integrate ecogeographical variables with measures of the

effectiveness of sampling can be used to estimate biodiversity patterns (species

richness) of reptiles in remote areas that have received limited surveys.

Location The Western Palaearctic (Europe, Northern Africa, the Middle East

and Central Asia).

Methods We gathered data on the distribution of turtles, amphisbaenians and

lizards. We used regression models integrating spatial autocorrelation (spatial

eigenvector mapping and Bayesian autoregressive models) to analyse species

richness, and identified relationships between species richness, ecogeographical

features and large-scale measures of accessibility.

Results The two regression techniques were in agreement. Known species rich-

ness was dependent on ecogeographical factors, peaking in areas with high tem-

perature and annual actual evapotraspiration, and intermediate cover of natural

vegetation. However, richness declined sharply in the least accessible areas. Our

models revealed regions where reptile richness is likely to be higher than currently

known, particularly in the biodiversity hotspots in the south of the Arabian Pen-

insula, the Irano-Anatolian region, and the Central Asian mountains. An inde-

pendent validation data set, with distribution data collected recently throughout

the study region, confirmed that combining accessibility measures with ecogeo-

graphical variables allows a good estimate of reptile richness, even in remote areas

that have received limited monitoring so far. Some remote regions that support

very rich communities are covered very little by protected areas.

Main conclusions Integrating accessibility measures into species distribution

models allows biologists to identify areas where current knowledge underesti-

mates the actual richness of reptiles. Our study identifies regions requiring

future biodiversity research, proposes a novel approach to biodiversity predic-

tion in poorly studied areas, and identifies potential regions for conservation.

Keywords

Amphisbaenians, biodiversity hotspots, conservation biogeography, ecogeogra-

phy, lizards, predictive models, spatial autocorrelation, species richness, survey

bias, turtles.

INTRODUCTION

Our knowledge of biodiversity distribution is far from com-

plete (Mora et al., 2011). First, many species on Earth are yet

to be described (the Linnean shortfall), and second, we have a

limited knowledge of the true distributions, even for the

best-studied taxa (the Wallacean shortfall) (Lomolino, 2004;

Cardoso et al., 2011; Vale & Jenkins, 2012). This paucity of
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information is a major challenge within conservation biogeog-

raphy, limiting our ability to analyse biodiversity patterns and

set conservation priorities (Lomolino, 2004; Cardoso et al.,

2011; Mora et al., 2011). Unfortunately, quantifying the

amount of biodiversity that remains unknown in a given area

is challenging (Raxworthy et al., 2003; Mora et al., 2011).

Species distribution models based on relationships between

biodiversity distribution and environmental features help to

elucidate the factors determining biodiversity and to identify

conservation targets even when information is incomplete

(Raxworthy et al., 2003; Qian & Ricklefs, 2008; Thuiller

et al., 2011). These models, being based on the available spe-

cies distribution data, may be affected by poor sampling.

Integrating data on the effectiveness of surveys may greatly

improve the performance of models of species richness and

species distribution (Kadmon et al., 2004; Bini et al., 2006;

Phillips et al., 2009; Barbosa et al., 2010). Unfortunately,

measures of the effectiveness of surveys are often lacking,

particularly for large-scale data sets, where data are obtained

from a variety of heterogeneous sources. Accessibility can be

a major source of sampling bias. Monitoring in remote areas

is often limited, and so biodiversity can be significantly

underestimated (Nelson et al., 1990; Margules & Pressey,

2000; Bini et al., 2006; S�anchez-Fern�andez et al., 2008; Barb-

osa et al., 2010; Kent & Carmel, 2011). The accessibility of a

region can thus be a useful proxy of the effectiveness of sam-

pling in biogeographical studies. Recently, Nelson developed

a global-scale measure of accessibility, quantified as the travel

time from the nearest city using land-based or water-based

transport (Nelson, 2008; Uchida & Nelson, 2010). However,

we are not aware of studies integrating large-scale measures

of accessibility into species distribution models.

The aim of this study was to analyse the richness of reptile

species (considering turtles, amphisbaenians and lizards) in

the Western Palaearctic, and to evaluate the importance of

accessibility in determining known species richness at the

biogeographical scale. The Western Palaearctic is a large bio-

geographical region, encompassing Europe, North Africa, the

Middle East and Central Asia (Fig. 1); it contains hotspots of

reptile biodiversity and endemism (Mittermeier et al., 2004;

Cox et al., 2006; Sindaco & Jerem�cenko, 2008), but is heavily

threatened by growing human pressure (Brooks et al., 2006;

Cox et al., 2006; Ficetola & Padoa-Schioppa, 2009). The area

includes easily accessible, human-dominated regions (e.g.

Western Europe), in which extensive inventories of reptile

biodiversity have been performed, but also remote regions

(Fig. 1a) where biodiversity data remain sparse (Sindaco &

Jerem�cenko, 2008). Furthermore, we evaluated whether inte-

grating accessibility into species distribution models may

help biologists to improve estimates of species richness, even

in remote areas that have received limited surveys so far. In

addition, reptiles are among the terrestrial vertebrates for

which distribution data are more limited, and the only ones

for which no comprehensive assessment of conservation sta-

tus has been completed (Hoffmann et al., 2010). The results

of our study may improve knowledge of reptile biodiversity

in the study area, and provide large-scale information that

can be useful for conservation planning.

MATERIALS AND METHODS

Study area and data sets

We considered the ‘Western Palaearctic’ according to Sindaco

& Jerem�cenko (2008). This region includes the western portion

of the Palaearctic realm [Europe, the Arabian Peninsula, wes-

tern Asia (west of the Indus Valley), the former Soviet Repub-

lics of Central Asia and Russia (west of the Ural Mountains)]

and several countries of northern Africa (including the Sahara

Desert north of approximately 22° N) (Fig. 1). Our data set

included more than 67,000 distributional records collected

before 2008, showing the known distribution of the 480 native

species of terrestrial turtles, amphisbaenians and lizards occur-

ring in the area (Sindaco & Jerem�cenko, 2008). The number of

records per cell cannot be considered an index of the sampling

effort, because in the best-surveyed areas (e.g. Europe), data

were obtained from comprehensive sources such as atlases,

summarizing a much larger number of observations. Presence

records of each species were mapped on a grid of 3530 cells

with a resolution of 1° 9 1° (the resolution of data with less

accurate coordinates). Taxonomy followed the checklist of

Sindaco & Jerem�cenko (2008), which was based on the critical

review of about 880 papers. The list includes species recog-

nized on the basis of biological, evolutionary and morphologi-

cal species concepts (Uetz, 2010). Distribution maps of each of

the 480 species used for analyses are available in Sindaco &

Jerem�cenko (2008). Reptile richness in each cell was then cal-

culated by overlapping the distribution maps of all the 480

species. We also considered coastal cells and islands, as they

harbour multiple endemic species and can constitute impor-

tant biodiversity areas, when taking into account their limited

surface area (Cox et al., 2006; Ficetola & Padoa-Schioppa,

2009).

As environmental variables, we considered two geographical

variables – cell surface occupied by non-aquatic environments

(calculated on the basis of the GlobCover land cover; Bicher-

on et al., 2008) and elevation range (calculated on the basis of

a 30-arc-second digital elevation model; Hijmans et al., 2005);

and three climatic variables – annual mean temperature,

annual actual evapotranspiration (annual AET hereafter), and

annual summed precipitation (New et al., 2002), which are

considered to be major drivers of reptile biodiversity (Qian &

Ricklefs, 2008; Powney et al., 2010). Potential evapotranspira-

tion can also have an important role (Rodr�ıguez et al., 2005),

but was not considered because it is highly collinear to the

other climatic variables. Furthermore, we considered the aver-

age accessibility of each cell (Nelson, 2008) and the percentage

of each cell occupied by natural vegetation, calculated on the

basis of GlobCover (Bicheron et al., 2008). We also calculated

the percentage of each cell covered by protected areas, on

the basis of the World Database on Protected Areas (http://

protectedplanet.net/) (Fig. 1b). All variables were upscaled
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(via averaging) from the original sources to match the

1° 9 1° resolution. Accessibility represents the travel time to

the nearest city (population � 50,000 people) using land-

based or water-based transport on a regular raster grid. It is

based on a cost–distance algorithm computing the ‘cost’ of

travelling between two locations, assuming that travelling time

is affected by parameters such as road/railway network, pres-

ence of paths, navigable water bodies, slope and political

boundaries. For each 1° 9 1° cell, we obtained the average

accessibility (in hours), from the 30″-resolution accessibility

grid layer (Nelson, 2008; Fig. 1a). A few cells (3%) had aver-

age accessibility � 1 h. To avoid these cells acting as outliers,

we assumed that all areas within 1 h of the nearest city may

be surveyed with similarly high sampling effort, and were

assigned an accessibility of 1 (i.e. 1 h is the minimum accessi-

bility across the whole study area). The appropriateness of this

approach is confirmed by the observation that known richness

follows a nonlinear pattern, with maximum richness at acces-

sibility � 1 h (Fig. 2). The study area includes several remote

regions in the Arabian Peninsula, the Sahara Desert, in several

areas of the Middle East and Central Asia, and in northern

Russia (the latter almost devoid of reptile fauna). Although

there are remote areas both in cold and warm regions

(Fig. 1a), the most accessible areas tended to have higher

annual AET [Dutilleul’s (1993) correlation index: r = �0.69,

n = 3530, modified d.f. = 22.4, P < 0.001] and more precipi-

tation (r = �0.59, n = 3530, modified d.f. = 24.3, P = 0.003).

The correlation with the other environmental variables was

not significant [Dutilleul’s (1993) correlation for all pairs:

n = 3530, P > 0.06].

Species richness models

We used regression models to evaluate the relationships

between environmental features and species richness. The

residuals of ordinary least squares regression were affected by

significant spatial autocorrelation (Moran’s I = 0.40,

P < 0.001, n = 207,214), and so we integrated autocorrela-

tion into our models. Because results may differ across statis-

tical techniques, we used two different approaches that are

(a)

(c) (d)

(b)

Figure 1 Accessibility, protected areas and reptile richness within the Western Palaearctic. (a) Mean accessibility of 1° 9 1° cells within
the study area (calculated following Nelson, 2008). Accessibility is measured as the travel time (in hours) from the nearest city using
land-based or water-based transport. (b) Percentage of each cell occupied by protected areas (World Database on Protected Areas;

http://protectedplanet.net/). (c) Observed species richness of reptiles across the Western Palaearctic. (d) Reptile species richness
predicted by models assuming that all cells are accessible in 1 h. The picture shows the average predictions of spatial eigenvector

mapping and Bayesian conditional autoregressive model. Predictions of the two models are shown in Fig. S2 in Appendix S2. The

locations of major cities are also shown: Alg, Algiers; Alm, Almaty; Ba, Baghdad; Cai, Cairo; Kar, Karachi; Mar, Marrakech; Mos,
Moscow; Par, Paris; Riy, Riyadh; San, Sana’a; Te, Tehran; Tel, Tel Aviv; Tri, Tripoli.
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among the best-performing techniques when using non-nor-

mal data: spatial eigenvector mapping (SEVM) and Bayesian

intrinsic conditional autoregressive models (BCA) (Dormann

et al., 2007; Beale et al., 2010). Our dependent variable was a

count, and so we assumed a Poisson error distribution rather

than more standard techniques such as generalized least

squares, simultaneous or conditional autoregressive models,

which are suitable for normally distributed data (Dormann

et al., 2007; Beale et al., 2010). Species richness may have a

maximum when certain environmental variables reach cer-

tain values; furthermore, previous studies suggested that rela-

tionships between species richness and ecogeographical

variables are often nonlinear (Whittaker et al., 2007; Qian,

2010). We therefore also included quadratic terms for cli-

matic variables, vegetation and accessibility in all models, to

take into account potential nonlinear relationships.

SEVM allows the translation of the spatial arrangement of

data points into explanatory variables (eigenvectors) that cap-

ture spatial effects (Dormann et al., 2007). Neighbouring cells

were linked using a king’s connection scheme and we gener-

ated eigenvectors using Moran’s eigenvector maps (Dray et al.,

2006; Borcard et al., 2011). We then selected the eigenvectors

that best reduced the spatial autocorrelation of residuals, and

included them as spatial predictors in generalized linear mod-

els (GLM) (Griffith & Peres-Neto, 2006; Dormann et al.,

2007). Comparisons among statistical methods showed that

this implementation of SEVM is flexible and efficient, even

when analysing non-normal data (Dormann et al., 2007). To

take overdispersion into account, we used a quasi-Poisson

family and tested significance using an F test (Crawley, 2007).

We used the procedure proposed by Phillips and co-workers

(Phillips, 2010; Elith et al., 2011) to evaluate the relative

importance of predictors in SEVM. First, we built the models

including each environmental variable in isolation. Subse-

quently, each variable (including both linear and quadratic

terms) was removed in turn, and the model run with the

remaining variables. The difference in explained variation

between the full model and the one excluding the variable of

interest provides an estimate of the independent contribution

of such variable, after taking into account other parameters

and spatial autocorrelation (Phillips, 2010; Elith et al., 2011).

BCA is a hierarchical Bayesian technique that incorporates

a spatial random effect, describing the neighbourhood of each

site, into Bayesian regression models. Simulations have shown

that BCA is one of the spatial techniques with the best per-

formance under a variety of conditions (Latimer et al., 2006;

Beale et al., 2010). We built BCA assuming a Poisson error

distribution. A model assuming negative binomial error had

a higher deviance information criterion, indicating that

overdispersion did not affect the BCA model. To ensure con-

vergence, we ran three different MCMC chains. For each

chain, we performed a burn-in of 15,000 iterations, followed

by 45,000 iterations thinned every 10 iterations. For all vari-

ables, Brooks–Gelman–Rubin diagnostics were approximately

1, indicating convergence (K�ery, 2010). We then calculated

the estimates of regression coefficients and their 95% highest

posterior density credible intervals (HPDI).

The results of ecogeographical studies may be affected by

the scale at which analyses are performed (Hawkins, 2012).

Furthermore, the large number of cells might increase the

chance of finding significant results. To confirm our results,

we therefore repeated our analyses using a grid with a resolu-

tion of 2° 9 2° (975 cells).

To reduce skewness and improve normality where needed,

variables were transformed using logarithms (cell surface, ele-

vational range and accessibility), square-root (summed annual

precipitation) or square-root-arcsine (percentage of natural

vegetation). We calculated the proportion of explained devi-

ance (R2
D) as a measure of the variation explained by species

richness models. For SEVM, values of R2
D were adjusted to

take into account the number of predictors in the model

(Borcard et al., 2011). When more than one modelling tech-

nique is used, differences among algorithms can determine

differences in performance and lead to non-identical results

(model-based uncertainty) (Marmion et al., 2009). To reduce

the model-based uncertainty for model predictions, we kept

(a) (b)

(c)

(e)

(d)

Figure 2 Relationships between environmental variables and
reptile richness for the Western Palaearctic, as estimated by

spatial eigenvector mapping. Predictions are shown for (a) mean
annual temperature; (b) summed annual precipitation; (c)

annual actual evapotranspiration (annual AET); (d) proportion
of each cell occupied by natural vegetation (%); (e) mean

accessibility (travel time in hours from the nearest city using
land-based or water-based transport). The plots include variables

for which the model takes quadratic terms into account. Grey

dots represent observed species richness in cells. The predictions
for each variable are made while holding the other variables

fixed at their global median. Fig. S2 in Appendix S2 reports the
results from the Bayesian autoregressive model and the global

medians of variables.

Journal of Biogeography 40, 1202–1211
ª 2012 Blackwell Publishing Ltd

1205

Estimating biodiversity in remote regions



the average consensus prediction of the two species richness

models (Marmion et al., 2009). Using the individual results of

either model yielded nearly identical results (see Results). Sub-

sequently, we projected models using a new data set, with

identical environmental variables and spatial structure, but

assuming accessibility is 1 h for all cells. This allowed us to

evaluate the potential species richness of each cell, if it

received a surveying effort similar to the most accessible ones

(‘projected richness’ hereafter).

Validation of model predictions

To test whether the projected richness is an accurate estimate

of the actual species richness, we obtained recent data on

reptile distributions (from recent field research or publica-

tions) in 80 grid cells that have received intense sampling

(Fig. 3, and see Appendix S1 in Supporting Information).

These recent data were not included in the 2008 data set

used to build the species richness models. Independent vali-

dation data were obtained mostly from recent publications

on reptile distributions (73 cells). In six cells, recent data

were obtained both from extensive field surveys performed

by the authors and from the literature. Sampling was per-

formed from 2008 to 2010 through diurnal and nocturnal

visual encounter surveys, trying to cover the widest range of

environmental features (Heyer et al., 1994; Ficetola et al.,

2010). In one additional cell, data were obtained through

field surveys only (total: 80 cells with recent data) (Appendix

S1). As these cells recently received an intense and focused

surveying effort, they represent areas with reliable informa-

tion for the validation of model predictions. We thus

assumed that reptile richness recorded from recent, intensive

surveys (‘validation richness’ hereafter) represents an

improved estimate of the actual species richness in these

cells. Validation cells were in multiple regions of the study

area, with a wide range of accessibility (Fig. 3, Appendix S1).

In order to assess the ability of the projected richness model

to correctly predict the actual species richness in the valida-

tion cells, we built three Poisson GLMs considering validation

richness as the dependent variable in all cases. As potential

predictors, we included (1) the projected richness (i.e. the

richness predicted by the species richness model assuming

accessibility is 1 h in all cells), and (2) the number of species

recorded in the 2008 data set (i.e. the original data set of Sind-

aco & Jerem�cenko, 2008). In both these models, we assumed

B = 1 and intercept = 0, i.e. a perfect overlap between best

available value of the species richness and either (1) our pro-

jected richness or (2) the richness recorded until 2008. We

considered the null model as a third GLM (3), assuming no

relationships between the validation and projected species

richness. We then used the Akaike information criterion

(AIC) to compare the performance of the three GLMs.

Due to sampling constraints, remote cells were less fre-

quent in our validation data. Furthermore, several validation

cells were clustered, and this may affect the results of regres-

sion-based validation. As an additional metric of prediction

performance, we compared the projected richness to the vali-

dation richness. For each cell, we calculated the absolute

value of [(projection � validation)/validation] 9 100%. We

then subtracted that value from 100%, to obtain the ‘per-

centage accuracy’ for each cell. Subsequently, we repeated the

same procedure with the richness recorded until 2008.

We used Spearman’s correlation to evaluate the relationship

between projected reptile richness in each cell, and the cell per-

centage covered by protected areas. Because of spatial autocor-

relation, significance was calculated using Dutilleul’s (1993)

degrees of freedom. We performed statistical analyses in R 2.12

(R Development Core Team, 2010) using the package spdep

(Bivand et al., 2010); we ran BCA inWinBUGS 1.4 (Spiegelhal-

ter et al., 2008).

RESULTS

Average reptile richness in 1° 9 1° cells (� SD) was

4.3 � 5.6 species (range: 0–41). The areas with the highest

known richness were in the eastern Mediterranean and wes-

tern Maghreb. Richness was irregularly distributed in wide

areas of the Middle East, with species-rich cells near cells

with very few known species (Fig. 1c). This pattern was most

apparent in the area of Israel–Jordan–Sinai Peninsula, south-

western Yemen, and around Riyadh, Saudi Arabia (Fig. 1c).

SEVM and BCA generally gave the same outcome, and their

results were in strong agreement (R2 = 0.82; Fig. S1 in

Appendix S2). Both models included 12 predictors (seven

variables with five quadratic terms); SEVM also included 91

eigenvectors representing spatial autocorrelation (Table 1).

Both models explained a large amount of the variation in

reptile species richness (SEVM: adjusted R2
ADJ = 0.69; BCA:

R2
D = 0.63). When controlling for the effect of cell surface,

species richness increased with elevational range, temperature

and precipitation, and decreased with annual AET. Further-

more, richness was highest in cells with intermediate values

of natural vegetation cover (Table 1, Fig. 2; see also Fig. S2

in Appendix S2). Temperature, natural vegetation, elevational

range and accessibility explained 20–32% of variation, when

used in isolation (Table 1). After taking into account spatial

autocorrelation, accessibility was the variable with the highest

independent contribution to the model. The independent

contribution of vegetation cover and temperature was 2–4%

while, when taking the other variables into account, the

independent contribution of surface, elevational range and

precipitation was limited (Table 1).
Figure 3 Distribution of the 80 validation grid cells, and

observed reptile richness in the validation cells.
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When taking the other variables into account, the highest

richness was observed in easily accessible cells, and gradually

decreased in more remote areas, following a nonlinear pat-

tern. For instance, if environmental features were held con-

stant, reptile richness was 4–5 species in cells with an average

accessibility of 1 h, compared with 1–2 species in cells with

an accessibility of 10 h (Fig. 2e, Fig. S2e in Appendix S2).

Results were extremely similar according to SEVM and BCA,

although the relationship between two climatic features

(annual AET and annual precipitation) were significantly

nonlinear in SEVM but not in BCA (Table 1). The analysis

performed at 2° 9 2° resolution yielded very similar results

(Appendix S3). For accessibility, regression coefficients were

slightly different from the model at 1° 9 1° resolution, but

the negative, nonlinear relationship was confirmed (Appen-

dix S3).

We then projected species richness models, assuming that

all cells are accessible in 1 h, while keeping the original val-

ues of environmental variables. This allowed us to estimate

the potential richness patterns, if remote areas received the

same surveying effort as the accessible ones. In several

regions, the projected consensus model predicted a higher

species richness than the currently known values, particularly

in the western Maghreb, in the south of the Arabian penin-

sula, in the Irano-Anatolian region, and in the Central Asian

mountains (Fig. 1d, Fig. S3 in Appendix S2). Cells with high

projected richness tended to be those with less cover of

protected areas (Fig. 1; correlation between projected rich-

ness and cover of protected areas: rs = �0.25, Dutilleul’s

modified d.f. = 96.9, P = 0.015). Furthermore, in the Wes-

tern Palaearctic, the cover of protected areas was highest in

easily accessible cells (rs = �0.24, d.f. = 145.3, P = 0.005).

Validation of biodiversity predictions

The recent distribution data updated the available informa-

tion, and usually increased known richness in validation

cells. The average number of newly recorded species per cell

was 2.5 (range: 0–12; Appendix S1). The projected model

predicted reptile richness in the recently surveyed cells well

(GLM: v21 = 195.6, P < 0.001; R2
D = 0.69; Fig. 4). It allowed

us to estimate the validation species richness better than

using the number of species reported in the 2008 data set

(DAIC = 73.0) or using the null model (DAIC = 193.6) as

predictors. This indicates very strong support for the predic-

tions of the projected model. Results remain the same if

SEVM or BCA are used rather than the consensus model

(not shown). Nevertheless, statistical tests should be consid-

ered with caution, as validation cells were not independent

and only a few of them were in remote regions, owing to the

limited recent surveys in those areas.

The average accuracy of predictions in validation cells

(n = 80) was 79%, and was higher than the accuracy calculated

using 2008 data (77%). The good performance of predictions

was particularly evident in remote cells (cells with accessibility

> 3 h: n = 39 accuracy of prediction = 74%, accuracy of 2008

data = 70%; cells with accessibility > 6 h: n = 7, accuracy of

prediction = 80%, accuracy of 2008 data = 55%).

DISCUSSION

In remote areas, we only know part of the species richness

(Nelson et al., 1990), but quantifying the magnitude of rich-

ness underestimation is extremely difficult. Our analyses

suggest that, after taking key ecogeographical variables into

Table 1 Results of multiple regression models using spatial eigenvector mapping (SEVM) and Bayesian conditional autoregressive

models (BCA), relating reptile species richness to multiple environmental variables for the Western Palaearctic.

Variable

SEVM BCA % Importance

B F d.f. P Median B 95% HPDI with only excluding

Surface 0.128 42.9 1, 3426 < 0.001 0.176 0.116 0.233 1.5% 0.4%

Elevational range 0.133 65.0 1, 3426 < 0.001 0.154 0.101 0.205 19.6% 0.6%

Temperature 0.157 210.7 1, 3426 < 0.001 0.096 0.058 0.138 31.9% 4.1%

(Temperature)2 �0.003 67.2 1, 3426 < 0.001 �0.002 �0.003 �0.001

Precipitation 0.051 14.6 1, 3426 < 0.001 0.052 0.010 0.100 1.6% 0.2%

(Precipitation)2 �0.001 6.8 1, 3426 0.009 �0.001 �0.002 0.0002

Annual AET �0.007 84.9 1, 3426 < 0.001 �0.004 �0.006 �0.002 4.5% 1.1%

(AET)2 0.00001 42.8 1, 3426 < 0.001 0.000003 �0.000001 0.000007

Natural vegetation 1.767 107.0 1, 3426 < 0.001 1.516 1.034 1.947 20.7% 2.1%

(Nat. vegetation)2 �1.140 121.4 1, 3426 < 0.001 �0.952 �1.219 �0.661

Accessibility 0.083 1.3 1, 3426 0.254 0.185 �0.004 0.368 14.7% 5.3%

(Accessibility)2 �0.236 108.4 1, 3426 < 0.001 �0.280 �0.338 �0.220

SEVM eigenv. 20.3 91, 3426 < 0.001 37.3% 17.9%

Significant coefficients (SEVM) and coefficients with 95% highest posterior density credible intervals (HPDI) not overlapping zero (BCA) are in

bold. %Importance: importance of each variable estimated for SEVM. In the ‘with only’ column, the importance (adjusted R2) is assessed by

building models including each variable in isolation; in the ‘excluding’ column, importance refers to the difference between the R2
ADJ of the full

model and the R2
ADJ of the partial model excluding the variable of interest. Variables are: cell surface occupied by non-aquatic environments, ele-

vational range, annual mean temperature, annual summed precipitation, annual actual evapotranspiration (annual AET), cell percentage occupied

by natural vegetation, average accessibility.
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account, accessibility influences the known reptile biodiver-

sity at the biogeographical scale. Thus, integrating accessibil-

ity into models helps to estimate reptile richness in remote,

poorly studied areas (Fig. 4a). Obviously, accessibility is not

a perfect proxy of sampling effort because, particularly at fine

scales, other factors may influence the completeness of inven-

tories, such as perceived attractiveness for researchers and

the presence of institutions specializing in certain taxa or

specific geographical areas (Nelson et al., 1990; S�anchez-

Fern�andez et al., 2008; Boakes et al., 2010; Vale & Jenkins,

2012). Nonetheless, broad-scale measures of accessibility can

provide information on the bias of field surveys, which may

be used to improve the performance of distribution models

and allows first assessments of the biodiversity in remote

areas where observations are sparse (Bini et al., 2006).

Our analysis suggests that reptile richness in remote areas

such as the Iranian Plateau (including Afghanistan and

south-western Pakistan), as well as parts of Central Asia,

may be higher than currently known (Fig. 1, Fig. S3 in

Appendix S2). Although this region includes two of the

world’s recognized biodiversity hotspots (the mountains of

Central Asia and the Irano-Anatolian region), known reptile

richness is still relatively low compared with other hotspots

(Mittermeier et al., 2004). The remoteness of the region, the

roughness of landscape and the lasting political instability

may have limited systematic surveys, and the actual biodiver-

sity is likely to be higher than currently known. Two major

mechanisms may cause such underestimation of species rich-

ness (Lomolino, 2004; Mokany & Ferrier, 2011): (1) species

distribution is poorly known (Wallacean shortfall), and (2)

some species are yet to be described (Linnean shortfall).

Recent surveys provide a measure of causes of richness

underestimation: on average, surveys increased the known

richness by 47% and, in 13 cells, the increase in richness was

� 100% (Appendix S1). Limited knowledge of species dis-

tribution was the major cause of richness underestimation,

as many species are recorded for only one or very few locali-

ties, and most new records in the validation cells expanded

the range of known species. The discovery of new species is

much less frequent than distribution updates. Nevertheless,

most of the recently described reptile species in the Western

Palaearctic (see e.g. Masroor, 2008; R€osler et al., 2008; Naza-

rov et al., 2009; Torki, 2010; Busais & Joger, 2011; Torki

et al., 2011) have been found in areas where our model sug-

gests a higher richness than currently reported, such as the

south of the Arabian Peninsula and the Irano-Anatolian

region. Finally, in recent years, molecular tools are improving

our definition of species identity, with the recognition of

cryptic taxa and the raising of geographically isolated ‘sub-

species’ to the rank of species. These studies tend to have a

geopolitical bias (Harris & Froufe, 2005), but molecular tools

and integrated taxonomy are nevertheless starting to expand

our knowledge of biodiversity, even for remote or under-

studied regions (e.g. Barata et al., 2012). Overall, we con-

clude that both Wallacean and Linnean shortfalls affect

known reptile richness and our models help to identify

regions where these shortfalls are particularly strong.

Reptiles are the only terrestrial vertebrates for which, so

far, no comprehensive maps of species distribution range are

available at the global scale, thereby limiting large-scale anal-

yses of biodiversity patterns. For instance, this is the first

analysis of reptile richness covering the whole Western Palae-

arctic on the basis of a regular grid (see Rodr�ıguez et al.,

2005, for an analysis of Europe). Previous large-scale studies

of reptile richness highlighted that the availability of energy

is the major determinant of reptile richness (Rodr�ıguez et al.,

2005; Qian et al., 2007; Whittaker et al., 2007; Qian & Rick-

lefs, 2008; Powney et al., 2010; Qian, 2010). Our results were

in agreement with these findings, as reptile richness was

highest in areas characterized by warm climate and low

annual AET (Fig. 2). Integrating proxies of sampling effort,

such as accessibility, may improve the performance of biodi-

versity models, allowing better estimates of the relationships

between species richness and environmental features (Phillips

et al., 2009; Bonardi et al., 2011; G�omez-Rodr�ıguez et al.,

2012), and helping to improve our understanding of the

impact of environmental changes (e.g. climate or land-use

change) on species richness. This can be particularly valuable
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Figure 4 Relationship between ‘validation richness’ (species

richness of reptiles of the Western Palaearctic, obtained from
recently available information) and: (a) the number of species

predicted in the validation cells, assuming accessibility from the
nearest city by land and water transport in 1 h; (b) the number

of species in the 2008 data set. Lines have an intercept of 0 and
a slope of 1.
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for regions or taxa where insufficient data are available for

modelling each species individually (Mokany & Ferrier,

2011). More accurate estimates of alpha diversity can also be

integrated into a metacommunity framework, to estimate

community composition in poorly known areas (Mokany

et al., 2011). Nevertheless, it should be noted that no single

environmental variable explained richness well, and that spa-

tial autocorrelation accounted for a substantial amount of

the variation (Table 1), suggesting an important role of his-

torical or other unmeasured factors.

Systematic conservation planning requires more complete

knowledge of biodiversity distribution and the identification

of relationships between biodiversity and environmental fea-

tures (Margules & Pressey, 2000; Rondinini et al., 2006; Mok-

any & Ferrier, 2011). Efforts to fill this gap are a priority for

conservation biogeography, and must be performed in all

regions and environments. Unfortunately, large areas of the

globe have received limited surveys so far. Our approach

allows spatially explicit estimates of unknown species richness,

and can therefore guide the allocation of funding for biodiver-

sity surveying towards specific regions, in which actual biodi-

versity values may be much higher than currently known.

Conservation actions are usually based on known biodi-

versity, with protected areas targeted to regions with high

species richness, endemism and threat (Hughes et al., 2002;

Brooks et al., 2006; Rondinini et al., 2006). This may bias

the allocation of conservation efforts towards the best-known

areas, while regions with rich biodiversity, but that are

poorly studied, may remain under-represented (Bini et al.,

2006). In the Western Palaearctic, remote regions can host

high biodiversity, but tend to receive limited protection

(Fig. 1). Our study identifies areas where the true biodiver-

sity is probably much higher than the current known esti-

mates. An exhaustive assessment of the network of protected

areas for the conservation of reptiles is beyond the aim of

this study, and should be performed at a finer spatial scale,

taking into account not only species richness, but also other

parameters such as the degree of endemism, the irreplace-

ability of areas, the presence of endangered taxa, and threat-

ening processes (Margules & Pressey, 2000; Bini et al., 2006;

Brooks et al., 2006). Our improved estimates of species rich-

ness can be integrated with the available information on

endemism and threat, to identify regions where new pro-

tected areas may be required, despite biodiversity data

remaining scarce (Hughes et al., 2002; Bini et al., 2006;

Rondinini et al., 2006). Furthermore, integrating our broad-

scale analysis with high-resolution data on habitat availability

and changes in land cover may allow finer-scale information

to be developed (Rondinini et al., 2011), which could help

to refine the identification of conservation priorities. Some

remote regions with high reptile richness had a very limited

cover of protected areas, or no protected areas at all. There

is a notable scarcity of protected areas in the south-west of

the Arabian Peninsula (particularly in Yemen), in the east of

the Iranian Plateau and in the western Maghreb (Fig. 1b),

even though these regions are recognized as global biodiver-

sity hotspots, and have a very high proportion of endemism

for both reptiles and other taxa, including several micro-

endemic reptiles recorded only in one or very few localities

(Mittermeier et al., 2004; Sindaco & Jerem�cenko, 2008).
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ABSTRACT

Aim Species richness is one of the commonest measures of biodiversity, and is a
basis for analyses at multiple scales. Data quality may affect estimations of species
richness, but most broad-scale studies do not take sampling biases into account. We
analysed reptile richness on islands that have received different sampling efforts,
and assessed how inventory completeness affects the results of ecogeographical
analyses. We also used simulations to evaluate under what circumstances insuffi-
cient sampling can bias the outcome of biodiversity analyses.

Location Mediterranean islands.

Methods We gathered data on reptile richness from 974 islands, assuming better
sampling in islands with specific inventories. We used Moran’s eigenvector
mapping to analyse the factors that determine whether an island has been surveyed,
and to identify the relationships between reptile richness, geographical parameters
and anthropic parameters. We simulated islands, mimicking patterns of true data,
and sampled them with varying effort. Simulated richness was analysed using the
same approach used for real-world data.

Results The probability that islands were sampled for reptiles was higher in large,
human-populated islands. The relationship between human impact and reptile
richness was negative in well-surveyed islands, but positive in islands that had not
been systematically surveyed, because densely populated and accessible islands
receive better sampling. In simulations, analyses successfully retrieved the relation-
ships between species richness and human presence only if the average species
detection probability was ≥75%. Poorer sampling resulted in biased regression
results.

Main conclusions Human activities may strongly affect biodiversity, but human
presence and accessibility improve sampling effort and thus the quality of biodi-
versity information. Therefore, regressing known species richness on parameters
representing human presence may result in apparent positive relationships. These
two facets of human presence (positive on biodiversity knowledge, negative on
actual biodiversity) represent a major challenge for ecogeographical studies, as not
taking them into account would bias analyses and underestimate human impact.

Keywords
Accessibility, biodiversity surveys, detection probability, herpetological atlas,
island biogeography, virtual ecologist, Wallacean shortfall, zero-inflated
models.
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INTRODUCTION

The analysis of species richness over broad spatial scales is a

central topic in ecology and biogeography. These analyses can

help to understand the environmental factors that drive biodi-

versity, to evaluate the ongoing effect of human activities, and to

forecast the potential impact of future environmental changes

(Kerr et al., 2007). Analyses of species richness over broad
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geographical scales are increasingly popular due to technical

advancements (e.g. geographical information systems, statistical

tools suited for the analysis of spatially explicit data), but also

due to the growing availability of environmental layers and dis-

tribution data, particularly in faunistic/floristic atlases and

online databases (Yang et al., 2013; Ficetola et al., 2014). Our

knowledge of species distribution remains, however, largely

incomplete, even for the best-studied taxa (Wallacean shortfall)

(Lomolino, 2004). Even if we assume that all the species detected

in a given area are correctly identified and reported, the known

species richness may be a severe underestimation of the true

richness, because many species remain undetected. Analyses on

plants and reptiles suggest that, in broad-scale databases, the

underestimation of the true richness in a given area can exceed

30%, and underestimation is likely to be stronger in tropical

regions and in less-studied, species-rich taxa (Ficetola et al.,

2013; Yang et al., 2013).

Incomplete sampling can influence the outcome of analyses

in multiple ways. In some cases, some species remain undetected

at certain sites, but imperfect detection is randomly distributed

across environmental patches. Under these circumstances,

imperfect detection would moderately bias the results of analy-

ses, for instance by reducing the absolute values of regression

coefficients (Gu & Swihart, 2004), but random misdetection is

not considered to have a major impact on the interpretation of

results (Van Buskirk, 2005; but see also Foody, 2011). Unfortu-

nately, it is unlikely that imperfect sampling would be random

over broad spatial scales. If sampling is systematically biased

toward areas with specific environmental features, the impact on

ecogeographical analyses can be severe. For instance, regions

with higher richness (e.g. strong elevation gradients) often

attract more research interest (Sánchez-Fernández et al., 2008;

Vale & Jenkins, 2012; Yang et al., 2013). More intensive sampling

in mountainous regions is expected to overestimate the impor-

tance of topographic gradients on species richness, while

neglecting other, relevant variables (Yang et al., 2013).

Human presence can have contrasting effects on known bio-

diversity. On the one hand, human impact often has negative

effects on many native species, reducing the richness of species

that avoid human habitats. On the other hand, areas with high

human presence and accessibility are most likely to receive accu-

rate sampling and can therefore show more known species,

regardless of the true species richness (Sánchez-Fernández et al.,

2008; Ficetola et al., 2013). This sampling artefact may create

misleading patterns of known biodiversity, determining under-

estimation of the human impact on biodiversity. In recent years,

we have increasingly come to appreciate the importance of sam-

pling accuracy on the analysis of species distribution and rich-

ness. A growing body of literature explored the effects of

incomplete sampling, to identify new approaches for the analy-

sis of biodiversity data (MacKenzie et al., 2006; Miller et al.,

2011; Gómez-Rodríguez et al., 2012). Most of these studies,

however, were performed at rather fine spatial scales (e.g.

regional or landscape), while less attention has been devoted to

broad-scale analyses of data quality, and to the impacts on

macroecological analyses (but see Sánchez-Fernández et al.,

2011; Foody, 2011; Kéry, 2011; Comte & Grenouillet, 2013; Yang

et al., 2013; Lahoz-Monfort et al., 2014).

Islands are an excellent study system in which to assess the

impact of data quality on species-richness analyses. Islands have

attracted the attention of ecologists and biogeographers for

more than 100 years, and many studies have identified the eco-

logical, geographical and human factors that determine species

richness (McArthur & Wilson, 1967; Whittaker &

Fernández-Palacios, 2007). The availability of faunistic and flo-

ristic checklists for many islands has boosted biogeographical

analyses, even over broad spatial scales (e.g. Kalmar & Currie,

2006; Kreft et al., 2008; Triantis et al., 2012). These sources often

rely on a variety of surveys (Triantis et al., 2012), but limited

information is available on their completeness, and on the

potential consequences of their quality for analyses.

The aim of this study was to evaluate the contrasting effects of

human impact on species-richness data for islands. We focused

on Mediterranean reptiles; reptiles are abundant vertebrates in

small islands, and many data are available for this group in

faunistic atlases and other publications, although the data

quality is uneven. First, we identified the geographical and

human factors related to the availability and quality of biodiver-

sity data. Second, we evaluated whether different levels of sam-

pling quality may affect the observed pattern of species richness.

Specifically, we predicted a negative relationship between

human impact and the true reptile richness on islands, but

non-negative or positive relationships between richness and

human impact if sampling is not evenly distributed, because

islands that are easily accessible or with greater human presence

are better sampled. Finally, we used the ‘virtual ecologist’

approach (Zurell et al., 2010) to simulate islands suffering dif-

ferent human impacts. We evaluated how human impact may

interact with sampling quality, and identified the conditions

under which poor sampling may bias the estimation of the

relationship between species richness and human impact.

MATERIALS AND METHODS

Study area and datasets

We analysed the islands of the Mediterranean basin and the

adjacent Macaronesia (Fig. 1). We considered three geographical

features that are known to affect reptile richness on islands –

area, isolation and maximum elevation (McArthur & Wilson,

1967; Ficetola & Padoa-Schioppa, 2009) – and three variables

that represent human impact – total human population, the

presence of an airport, and naval connections. Airport presence

is strongly related to the accessibility of islands for people, and is

also a good indicator of economic development, trading

exchanges and tourism (Green, 2007). Isolation was measured as

the distance from the continent or from the nearest large island

(Corsica, Sardinia, Sicily or Crete). Area, elevation, human

population (in the period 2003–2007), naval connections and

airport presence were mostly obtained from Arnold’s (2008)

database of Mediterranean islands, and from Ficetola &

Padoa-Schioppa (2009). Additional data were obtained from

G. F. Ficetola et al.
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national statistical databases, atlases and geographical publica-

tions. Naval connections were coded as follows: 0, no regularly

scheduled connections with the mainland or with other islands;

1, ≤ 7 connections; 2, > 7 connections per week (Arnold, 2008).

We only considered islands with surface area greater than 1 ha;

islands with this area can host large populations of reptiles (e.g.

Pérez-Mellado et al., 2008).

Land use and climate are additional and potentially impor-

tant parameters. We calculated the percentage cover of non-

natural habitats (urban and cropland) as an additional measure

of human impact, on the basis of the 300-m resolution

GlobCover land-cover map (Bicheron et al., 2008). Potential

evapotranspiration (PET) is a climatic parameter that represents

the amount of atmospheric energy, and is strongly related to

reptile species richness (Rodríguez et al., 2005). We extracted

PET from Trabucco & Zomer (2009). Land-use and PET were

only available for a subset of islands with relatively large area,

because of their relatively coarse resolution.

We considered two different sources of data for reptile distri-

butions, resulting in two distinct datasets. First, herpetological

atlases have been published for several countries/regions

(Appendix S1 in Supporting Information). These sources

include specific sections on island biodiversity, representing the

summary of multiple, intensive surveys, and provide detailed

accounts of reptile communities on a number of islands. We

thus assume that the islands described in detail in these atlases

(‘atlas’ dataset) represent islands for which high-quality data are

available.

For the remaining islands (‘no-atlas’ islands), we searched for

information in a variety of sources, including published papers,

the grey literature, publications summarizing the grey literature,

and direct surveys by the authors (Sindaco & Jeremčenko, 2008;

Sindaco et al., 2013, and references in Appendix S1). Although a

herpetological guide of Greece is available (Valakos et al., 2008),

it does not detail the species composition on the islands, and

Greek islands were therefore included in the ‘no-atlas’ dataset.

The islands in this dataset probably received variable survey

effort and, for many of them (about 50%; see Results), we found

no information on reptile communities. For each island, we then

calculated the number of known native reptile species (see

Appendix S1).

Analysis of reptile data

In both datasets, environmental features (area, isolation, eleva-

tion, human population, naval connections and PET) and

species richness showed spatial autocorrelation. Autocorrelation

may be related to different biogeographical processes occurring

among archipelagos and may affect regression analyses. In pre-

liminary analyses, the residuals of ordinary least-squares regres-

sions were significantly autocorrelated (P < 0.05; Fig. S1 in

Appendix S2), so we integrated autocorrelation into the models,

and analysed the data using Moran’s eigenvector maps (MEM).

MEM allows the spatial arrangement of data points to be trans-

lated into explanatory variables (eigenvectors) that capture

spatial effects (Dray et al., 2006; Thayn & Simanis, 2013). We

used a permutation test to evaluate the autocorrelation of resid-

uals for all models. We generated MEMs on the basis of geo-

graphical distances, using the minimum distance that keeps all

sites connected (3°; Borcard & Legendre, 2002). We then selected

the eigenvectors that best reduce the spatial autocorrelation of

residuals, and included them as spatial predictors in generalized

linear models, until residual autocorrelation was not significant

any more (P > 0.05 after a permutation test) (Griffith &

Peres-Neto, 2006; Dormann et al., 2007). Comparisons among

statistical methods showed that this implementation of MEM is

flexible and efficient, even when analysing non-normal data, and

provides results that are congruent with other spatially explicit

techniques (Dormann et al., 2007; Siesa et al., 2011; Ficetola

et al., 2013; Thayn & Simanis, 2013). We performed the MEM

Figure 1 Study area and distribution of
the 974 analysed Mediterranean and
Macaronesian islands. Black triangles,
islands in the ‘atlas’ dataset; open circles,
islands in the ‘no-atlas’ dataset for which
we did not find reptile records; grey
circles, islands of the ‘no-atlas’ dataset
with at least one reptile record.
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analysis using the ‘ME’ function in the R package spdep (Griffith

& Peres-Neto, 2006; Bivand et al., 2013).

If surveyed, even the most isolated islands of the Mediterra-

nean, and all the islands with an area greater than 1 ha revealed

the presence of some reptile species (e.g. Pérez-Mellado et al.,

2008). We assumed that an island received some sampling if it

has at least one observation of either native or non-native

species. We used MEM (binomial error distribution) to identify

the factors that are most likely to determine whether an island

has been surveyed. For the ‘no-atlas’ dataset, the presence or

absence of reptile records was considered as the dependent vari-

able, whereas the six environmental variables (area, isolation,

elevation, human population, airport presence and naval con-

nections) were the independent variables. We used Akaike’s

information criterion (AIC) to compare candidate models,

including all the possible combinations of independent vari-

ables. AIC trades off explanatory power against the number of

predictors; parsimonious models explaining more variation

have low AIC values and are considered to be the ‘best AIC’

models (Symonds & Moussalli, 2011). AIC may select overly

complex models; we therefore considered a complex model only

if it showed a lower AIC than all its simpler nested models

(Richards et al., 2011). For each candidate model, we also cal-

culated the AIC weight, which measures the relative support of

models (Symonds & Moussalli, 2011).

We then used MEM to relate the observed richness of native

reptiles to the geographical and human variables. To compare

the outcome of analyses performed on high-quality data, with

analyses performed on data with varying quality, this analysis

was repeated four times: (1) on all the islands that received

some sampling, i.e. for which at least one species (either native

or non-native) was recorded; (2) to test whether the relation-

ship between human impact and observed richness was differ-

ent between the ‘atlas’ and ‘no-atlas’ datasets, for which we

repeated the analysis of the full dataset, including the interac-

tion between data quality (‘atlas’/‘no-atlas’) and variables rep-

resenting human impact; (3) on the ‘atlas’ dataset only; (4) on

the islands of the ‘no-atlas’ dataset which had received some

sampling.

Human population was strongly correlated to naval connec-

tions (Pearson’s r = 0.84). As highly correlated variables may

bias regression results, we first ran analyses using human popu-

lation and excluding naval connections, and then repeated them

including naval connections and excluding human population.

Finally, to evaluate the potential role of climate and land use, we

repeated analyses for the subset of islands for which these data

were available. Models were built with Poisson-distributed

errors or, if the residual deviance was strongly different from

residual degrees of freedom, with quasi-Poisson errors.

When necessary, variables were transformed using logarithm

(island area, isolation, elevation and human population),

square-root (PET) or arcsine-square-root (% land-use) trans-

formations. We tested significance using likelihood-ratio tests.

We detected no collinearity issues (variance-inflation factor

always < 5). Models were run in R 3.0; partial regression plots

were built using the package visreg (R Core Team, 2013).

Analysis of simulated data

The analysis of virtual data that simulate ecological processes

and sampling is a powerful framework, allowing the effect of

sampling and analytical methods to be assessed (Zurell et al.,

2010). We simulated data on species richness in islands, assum-

ing that the true richness was influenced by biogeographical

variables and negatively affected by human impact. Species rich-

ness was then virtually sampled with varying effort, assuming a

better sampling in human-dominated islands. Simulated data of

observed richness were then analysed using the same approach

used for real-world data. This allowed us to evaluate the conse-

quences of poor sampling: under what circumstances does

better sampling in human-dominated islands outweigh the

negative effects of human impact? How good should sampling

be in order to obtain reliable estimates of the true relationships

between species richness and environmental variables?

In each simulation run, we considered a set of 300 islands. For

each island, we generated variables representing environmental

features, true species richness and the number of species

detected. With regard to environmental features, we focused on

area, isolation and presence/absence of airport, as these were the

most important independent variables in explaining reptile dis-

tribution in the analysis of real-world data. Airport presence was

modelled as a function of island area, as larger real islands are

more likely to have an airport. The simulated number of species

effectively present in each island, S_Ns, was generated from a

Poisson distribution with parameter equal to the lambda value

predicted by the regression model for the islands in the ‘atlas’

dataset (Table 1c).

We then generated the number of species detected in each

islands, S_Nd. To simulate different sampling intensities across

islands, we computed for each island the variable Q, represent-

ing the probability of species detection, and therefore sampling

quality. Q is related to environmental variables, as shown in eqn.

1, built from real-world results:

Q
e K S airport S log area

=
+− + ×( )+ ×( )[ ]

1

11 2β β_ _ . (1)

β1 and β2 are the coefficients of the regression model that relate

the presence of reptile observations to environmental variables

(Table 2a). Sampling quality, Q, varies between 0 and 1, and is

better in large islands and in islands hosting an airport (see

Results). K is a constant which differs across simulation cycles,

allowing variation in the average sampling effectiveness across

all the islands to be represented; higher K determines better

sampling. In real data, the presence of a herpetological atlas

leads to higher K. In an island hosting S_Ns species, each species

has a different probability of being detected. The detection

probability of each species (p) in an island was drawn from a

beta distribution with mean of Q, and variance of 0.01. S_Nd

was the number of species detected in an island hosting S_Ns

species, and was calculated as the sum of S_Ns Bernoulli trials,

each with probability of success p.

G. F. Ficetola et al.
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We subsequently evaluated whether regression can success-

fully estimate the relationships between species richness and the

three environmental predictors (area, isolation and airport pres-

ence), by relating the detected species richness S_Nd to the

predictors. For each simulation, we built the regression models,

and recorded the model coefficients as well as the average values

of Q and S_Nd/S_Ns, which represents the proportion of species

successfully detected. We ran simulations with five values of K

(−2, −1, 0, 1 and 2), and 300 replicates per each value of K. A

complete description of the simulation methods is reported

in Appendix S2; the R code of simulations is available in

Appendix S3.

RESULTS

Mediterranean island data

We obtained data from 974 islands in 11 countries (Fig. 1). The

‘atlas’ dataset included 217 islands, and the ‘no-atlas’ dataset

included 757 islands. The ‘no-atlas’ islands were mostly concen-

trated in the Eastern Mediterranean basin (72%), although

several small islands of the Western Mediterranean were not

detailed in herpetological atlases (Fig. 1). Atlas islands tended to

be less isolated, smaller, with lower maximum elevation and

larger human populations than no-atlas islands (t-test, all

P ≤ 0.01), whereas the frequency of ferry connections was

similar between the two datasets (Mann–Whitney test,

P = 0.35). There was nonetheless a wide overlap in geographical

features and human impact between the two datasets, and the

atlas dataset included the largest and most isolated islands

(Appendix S2, Fig. S2).

Which islands are more likely to receive reptile surveys?

Out of the 757 islands of the ‘no-atlas’ dataset, we found at least

one species record in 372 islands (see Appendix S4 for a list of

islands for which we found no reptile records). The best AIC

model indicates that the probability of having at least one rec-

orded species was positively related to island area, airport pres-

ence and human population (Table 2). Three eigenvectors were

also included into the model. They represent significant spatial

autocorrelation (Table 2), and reduced residual autocorrelation

to non-significant values (Moran’s I = 0.005, P = 0.76). Some

models with lower AIC weights did not include human popula-

tion, and included a negative relationship with elevation

(Table 2b). Area and airport presence were included in all can-

didate models with high support.

Analysis of observed species richness

When all the islands with at least one record were analysed (589

islands), species richness clearly increased with island area and

elevation, and was negatively related to isolation. The observed

richness was not related to airport presence, but was positively

related to human population. Two eigenvectors were also

included into the model, to take spatial autocorrelation into

account (Table 1a).

We detected significant interactions between human popula-

tion, airport presence and dataset of origin (‘atlas’ vs. ‘no-atlas’):

the relationship between reptile richness and the variables rep-

resenting human impact was significantly more negative in

the ‘atlas’ dataset than in the ‘no-atlas’ dataset (significant

Table 1 Poisson regression models relating species richness of
native reptiles to geographical and human variables of
Mediterranean and Macaronesian islands. (a) Model built for all
the islands for which at least one species was recorded. (b) Model
built for the same islands used in (a), also including the
interaction between data quality (‘atlas’/‘no-atlas’) and the
variables representing human impact (human population and
airport). (c) Model built for the islands of the ‘atlas’ dataset. (d)
Model built for the islands of the ‘no-atlas’ dataset for which at
least one species was recorded. Correlograms of residual spatial
autocorrelation are shown in Appendix S2, Fig. S1.

Independent B χ2 d.f. P

(a) all islands with data

R2
D = 0.61; residual autocorrelation: P = 0.12

Area 0.29 41.82 1 < 0.001

Isolation −0.21 51.71 1 < 0.001

Elevation 0.18 8.15 1 0.004

Human population 0.09 13.74 1 < 0.001

Airport 0.02 0.05 1 0.829

MEM eigenvectors 42.97 2 < 0.001

(b) all islands; interactions between data quality and human impact

R2
D = 0.68; residual autocorrelation: P = 0.07

Area 0.36 72.41 1 < 0.001

Isolation −0.12 18.47 1 < 0.001

Elevation 0.09 2.57 1 0.109

Human population 0.13 12.29 1 < 0.001

Airport 0.08 0.02 1 0.889

Human population × data quality −0.16 30.21 1 < 0.001

Airport × data quality −0.53 9.45 1 0.002

Data quality* 0.27 16.79 1 < 0.001

MEM eigenvectors 21.95 1 < 0.001

(c) Islands on atlas†

R2
D = 0.60; residual autocorrelation: P = 0.17

Area 0.43 80.74 1 < 0.001

Isolation −0.11 5.03 1 0.025

Elevation 0.12 3.00 1 0.083

Human population −0.08 5.80 1 0.016

Airport −0.48 11.83 1 < 0.001

MEM eigenvectors 58.18 3 < 0.001

(d) Islands not on atlas

R2
D = 0.71; residual autocorrelation: P = 0.20

Area 0.26 16.31 1 < 0.001

Isolation −0.13 12.95 1 < 0.001

Elevation 0.11 1.56 1 0.212

Human population 0.18 31.14 1 < 0.001

Airport 0.11 2.33 1 0.127

MEM eigenvectors 8.46 1 0.003

R2
D: proportion of null-deviance explained by the model.

*Coded as follows: 0, ‘no-atlas’ dataset; 1, ‘atlas’ dataset.
†Quasi-Poisson error distribution.
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interactions in Table 1b). When only the ‘atlas’ islands were ana-

lysed, richness was negatively related to human population and

airport presence. Parameters representing human impact there-

fore showed opposite regression coefficients, compared to the

results of the full dataset (Table 1c, Fig. 2). Conversely, when we

analysed only the ‘no-atlas’ islands with at least one presence

record (372 islands), the relationships between species richness

and parameters representing human impact were similar to the

analysis of the full dataset. The relationship between reptile

richness and human population was positive, whereas the rela-

tionship with airport presence was not significant (Table 1d,

Fig. 2). Spatial eigenvectors were included in all the models, and

successfully reduced residual spatial autocorrelation to non-

significant values (Table 1; Appendix S2, Fig. S1).

We obtained analogous results for models using naval con-

nections instead of human population (Table S1 in Appendix

S2). The relationships between richness and variables represent-

ing human impact (naval connections and airport presence)

were generally positive both in the analysis of the full dataset,

and in the analysis of the ‘no-atlas’ islands, but the interaction

between naval connections and dataset was strongly significant

(Table S1b), because the relationship between reptile richness

and naval connections was weakly negative for the islands of the

‘atlas’ dataset (Table S1).

We obtained data on land use and climate (PET) for 307

islands (‘atlas’, 78 islands; ‘no-atlas’, 229 islands). After taking

into account the other variables, reptile richness was not signifi-

cantly related to either land use or PET (Appendix S2, Table S2).

It should nonetheless be remarked that data on land use and

climate were only available for the largest islands. For instance,

in this dataset the median area was 9.11 km2, whereas the

median area of the global dataset was 0.65 km2.

Simulations

The five values of K considered allow potential variation in

sampling quality (Fig. 3a) to be well represented. When K = −2,

only 21% of present species were detected; the proportion of

detected species rose to 54% with K = 0, and to 87% with K = 2

(Fig. 3a). The results of regression models were strongly

affected by sampling quality. For both island area and isolation,

coefficients were close to the actual values when K ≥ 1 (i.e. high

sampling quality and c. 75% of species or more detected),

whereas coefficient estimates were less accurate with lower

values of K (Fig. 3b,c), although the sign of the coefficient

remained unchanged for both area and isolation. The coeffi-

cient of the relationship between airport presence and species

richness was strongly affected by changes to K. The relationship

between airport presence and richness was positive if K = −2,

and approached the real, negative value only when K ≥ 1

(Fig. 3d). Poisson regression coefficients were therefore

strongly affected by sampling bias, and the relationship with

variables representing human presence may be inverted when

bias was strong.

DISCUSSION

Human presence, data quality and known richness

Species richness is one of the commonest measures of biodiver-

sity, and is a basis of ecological analyses at multiple scales.

However, the outcome of species-richness analyses may be

severely affected by data quality. Human presence, accessibility

and attractiveness of areas are strongly related to sampling effort

and the quality of biodiversity information (Sánchez-Fernández

Table 2 Binomial spatial eigenvector
models relating presence/absence of
reptile records on Mediterranean and
Macaronesian islands to human and
geographical variables. (a) Best model,
selected on the basis of Akaike’s
information criterion (AIC); (b)
environmental variables included in the
other candidate models. Only the 12
models with lowest AIC are reported
here; all these models also include MEM
eigenvectors. K, number of parameters
in the model; w, AIC weight; R2

D,
proportion of null deviance explained by
the model.

Independent variables B χ2 d.f. P K AIC w R2
D

(a) best-AIC model 7 811.5 0.63 0.24

Area 0.55* 12.20 1 < 0.001

Human population 0.27 5.48 1 0.020

Airport 15.37† 7.65 1 0.006

MEM eigenvectors 147.64 3 < 0.001

(b) Alternative models

Area (+), airport presence (+), elevation (−) 7 814.1 0.17 0.24

Area (+), airport presence (+) 6 815.0 0.11 0.23

Area (+), human population (+), elevation (−) 7 817.1 0.04 0.23

Area (+), human population (+) 6 817.1 0.04 0.23

Airport presence (+), isolation (+), human population (+) 7 821.6 0.004 0.23

Airport presence (+),human population (+) 6 821.7 0.004 0.23

Area (+), elevation (−) 6 822.3 0.003 0.23

Area (+) 5 823.6 0.001 0.22

Isolation (+), human population (+) 6 828.4 < 0.001 0.22

Human population (+) 5 828.6 < 0.001 0.22

Airport presence (+), elevation (+), naval connections (+) 7 840.0 < 0.001 0.21

*Used as β2 in eqn. 1.
†Used as β1 in eqn. 1.
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et al., 2008; Kent & Carmel, 2011; Ficetola et al., 2013; Yang

et al., 2013). Across the Mediterranean, sampling is clearly better

in islands with good transport connections and housing large

human populations. As a result, regressing species richness

against parameters representing human presence (e.g. human

population, airport presence and naval connections) may result

in apparently positive relationships (Table 1, Fig. 2c–d), even

though human impact is likely to have negative effects (Table 1c,

Fig. 2a–b). These two facets of human impact (positive on bio-

diversity knowledge; likely to be negative on actual biodiversity)

represent a major challenge for ecogeographical studies, as not

taking them into account would result in biased analyses and

misunderstanding of the true human impact.

This interpretation of our results is supported by simulation

analyses. Low sampling quality determines less accurate esti-

mates for all relationships (e.g. inflated error in the relationship

between isolation and richness; Fig. 3c), but the bias is particu-

larly relevant for parameters related to both richness and detec-

tion probability, such as airport presence (Fig. 3d). Actually, the

negative effects of human impact in our simulations could only

be successfully assessed if island communities are well-sampled,

and at least 75% of species are detected (Fig. 3). We do not know

the actual level of completeness of surveys in the Mediterranean

islands of our datasets. Richness underestimations of more than

50% are not infrequent in poorly-surveyed localities (Ficetola

et al., 2013; Yang et al., 2013), but survey quality was not evenly

distributed across islands in our real-world dataset. Even for the

‘no-atlas’ dataset, some islands received repeated focused

surveys, whereas others have only been occasionally sampled.

Some studies suggested that positive relationships between

biodiversity and human presence may arise because certain cli-

mates (e.g. warmer, with more precipitation) favour both

human activities and biodiversity (Stohlgren et al., 2006).

However, this effect is unlikely to influence our results, because

islands in our set span a limited latitudinal range (Fig. 1), and

share a similar Mediterranean climate. In fact, observed species

richness was not related to evapotranspiration, and the interac-

tions between sampling quality and human impact remained

evident when taking climate into account (Table S2). A positive

correlation between reptile richness and human presence might

also arise because humans settle on islands where water is avail-

able and with more habitats, and these parameters can also

positively affect species richness (Kadmon & Allouche, 2007).

Our models nonetheless considered island area and elevation,

which strongly correlate with habitat availability and diversity

(Davidar et al., 2002; Kreft et al., 2008). Furthermore, the posi-

tive correlation was only observed for the ‘no-atlas’ islands, sup-

porting the role of sampling quality.
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Human impact and reptile richness

For the ‘atlas’ islands, the relationships between species richness

and both human population and airport presence were clearly

negative, suggesting a strong impact on reptile communities

(Table 2, Fig. 2a–b). Human activities in the Mediterranean

basin date back to the Neolithic, and their effects extend to

most of the islands. The introduction of alien species is likely to

be the factor with the strongest negative effects on native rep-

tiles (Corti et al., 1999). Many alien species have been intro-

duced to Mediterranean islands in historical times, but the rate

of introductions is quickly rising due to increasing commercial

exchanges (Pinya & Carretero, 2011). Exhaustive data on trade

intensity were not available, so we used airport presence and

naval connections as proxies of tourism and trade between the

islands and the continents. Airport traffic is a major predictor

of economic development (Green, 2007), and airport presence

is one of the strongest predictors of the richness of alien rep-

tiles on islands (Ficetola & Padoa-Schioppa, 2009). Other

human impacts may have weaker effects on reptiles. Many

Mediterranean reptiles are well-adapted to traditional agricul-

ture, and may therefore tolerate the partial loss of natural habi-

tats. Nevertheless, recent urbanization poses the greatest threat,

and some endemic reptiles are actually endangered by habitat

loss and degradation. Finally, persecution by humans may have

locally important effects, particularly on snakes (Mullin &

Seigel, 2009).

How can we improve broad-scale
ecogeographical analyses?

Given the heterogeneous quality of broad-scale distribution

data, how can we improve their use for ecological analysis? One

potential approach is to identify localities for which data quality

is sufficiently high, and to focus analyses on well-surveyed sites

(Yang et al., 2013). This is the approach we used here, as we

assumed an adequate quality for the ‘atlas’ dataset. Nevertheless,

this approach remains subjective, and we did not have direct

control of the actual quality for many of the islands in the ‘atlas’

dataset. Even if these islands generally received repeated and

intensive sampling, information could be incomplete for some

of them. Alternative and more objective approaches include

using accumulation curves to estimate the completeness of data,

but this would require access to the original data, which is rarely

available for broad-scale databases. Furthermore, estimates

obtained through accumulation curves may not be consistently

reliable (Sánchez-Fernández et al., 2011; Yang et al., 2013).

A different approach would be to obtain estimates of sam-

pling effort (e.g. accessibility to researchers, number of known

surveys performed), and integrate them into models to improve

the results of analyses (Sánchez-Fernández et al., 2008;

Gómez-Rodríguez et al., 2012; Ficetola et al., 2013). These

measures were not available for all the islands in our dataset –

for instance, accessibility maps have a resolution of 1 km2

(Nelson, 2008), and many islands are smaller than this – but

could be successfully integrated into studies that focus on larger

spatial units. Finally, some analytical techniques have been pro-

posed for taking the complex effects of variables on detection

probability and richness into account, such as zero-inflated

Poisson models (ZIP; Zuur et al., 2009). Even with ZIP, however,
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we were unable to successfully capture the negative relationships

between human presence and species richness. Indeed, the ZIP

results were no better than those of standard regression models

(Appendix S2, Table S3, Fig. S3).

Even if there is general awareness that species distribution

data are rarely complete (Lomolino, 2004), the impact of this

underestimation on biodiversity analysis remains

underappreciated (Kéry, 2011). Uneven geographical sampling

can, however, strongly affect patterns of species richness and

may even invert ecogeographical relationships if the same

factors is related to both sampling quality and actual species

richness. Insufficient sampling can have consequences both for

ecological understanding and practical conservation planning.

For instance, misjudging the effects of human impact may result

in a lack of management actions. In the last decade, a growing

body of literature has investigated the effects of imperfect detec-

tion on local-scale studies, although this issue has attracted less

attention in the macro-ecological literature. More research on

this theme will allow a better understanding of broad-scale eco-

logical patterns, with potential consequences on biodiversity

conservation.
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